
Please cite this article in press as: S.A. Campbell, Z. Wang, Phase models and clustering in networks of oscillators with delayed coupling, Physica D (2017),
http://dx.doi.org/10.1016/j.physd.2017.09.004.

Physica D ( ) –

Contents lists available at ScienceDirect

Physica D

journal homepage: www.elsevier.com/locate/physd

Phase models and clustering in networks of oscillators with delayed
coupling
Sue Ann Campbell a, Zhen Wang b,*
a Department of Applied Mathematics and Centre for Theoretical Neuroscience, University of Waterloo, Waterloo ON N2L 3G1 Canada
b Department of Applied Mathematics, University of Waterloo, Waterloo ON N2L 3G1 Canada

a r t i c l e i n f o

Article history:
Received 2 May 2016
Received in revised form 2 February 2017
Accepted 12 September 2017
Available online xxxx
Communicated by S. Coombes

Keywords:
Time delay
Neural network
Oscillators
Clustering solutions
Stability

a b s t r a c t

We consider a general model for a network of oscillators with time delayed coupling where the coupling
matrix is circulant. We use the theory of weakly coupled oscillators to reduce the system of delay
differential equations to a phase model where the time delay enters as a phase shift. We use the phase
model to determine model independent existence and stability results for symmetric cluster solutions.
Our results extend previous work to systems with time delay and a more general coupling matrix. We
show that the presence of the timedelay can lead to the coexistence ofmultiple stable clustering solutions.
We apply our analytical results to a network of Morris Lecar neurons and compare these results with
numerical continuation and simulation studies.

© 2017 Elsevier B.V. All rights reserved.

1. Introduction

Coupled oscillator models have been used to study many bio-
logical and physical systems, for example neural networks [1,2],
laser arrays [3,4], flashing of fireflies [5], and movement of a slime
mold [6]. A basic question explored with such models is whether
the elements in the system will phase-lock, i.e., oscillate with
some fixed phase difference, and how the physical parameters
affect the answer to this question. Clustering is a type of phase
locking behavior where the oscillators in a network separate into
groups. Each group consists of fully synchronized oscillators, and
different groups are phase-locked with nonzero phase difference.
Symmetric clustering refers to the situationwhen all the groups are
the same size while non-symmetric clustering means the groups
have different sizes.

A phase model represents each oscillator with a single variable.
A differential equation for each phase variable indicates how the
phase of the oscillator changes in time:
dθi
dt

= Ωi + Hi(θ1, θ2, . . . , θN ).

Here Ωi is the intrinsic frequency of the ith oscillator and the
functions Hi described how the coupling between oscillators in-
fluences the phases. Phase models have been used to study the
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behavior of networks of coupled oscillators beginning with the
work of [7]. Phase models are sometimes posed as models for
coupled oscillators [5,7–9].When the coupling between oscillators
is sufficiently weak, however, a phase model representation of
a system can be derived from a higher dimensional differential
equation model, such as one obtained from a physical or bio-
logical description of the system [10–13]. The low dimensional
phase model can then be used to predict behavior in the original
high dimensional physical model. This approach has proved useful
in studying synchronization properties of many different neural
models [1,14–20]. Phase models can be linked to experimentally
derived phase resetting curves [10,13], thus this approach has also
been used to make predictions about synchronization properties
of experimental preparations [19].

[21,8] were the first to use phasemodels to study clustering be-
havior. Using the theory of equivariant differential equations [21]
studied a general network of identical oscillators of arbitrary size
with symmetric, weak coupling, corresponding to the symmetry
groups Sn, Zn, and Dn. They determined which type of solutions
are forced to exist by the symmetry in each case. For the case
of Sn symmetry they gave conditions for the stability of several
types of solutions, including symmetric cluster solutions, and de-
terminedwhichbifurcations are forcedby symmetry to occur. They
also studied the existence of heteroclinic cycles and tori for some
special cases. By direct analysis of the phase model, [8] studied a
network with global homogeneous coupling, (Sn symmetry). He
established general criteria for the stability of all possible sym-
metric cluster solutions as well as some nonsymmetric cluster
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solutions. Using numerical simulations, [8] further showed that
these results give a good prediction of stability for a variety of
model networks. More recently, [22] considered the existence and
stability of cluster solutions and fixed tori for phase models cor-
responding to networks with global homogeneous coupling. They
also considered the effect of additional absolute-phase product
coupling. Using a similar approach as [8] stability results have been
obtained for inhibitory neural networks with nearest-neighbor
coupling [23]. Phasemodel analysis has also been extensively used
to study phase-locking in pairs of model and experimental neu-
rons [12,19,24]. More recently it has been used to study clustering
in larger neural networks [25,26]. A more comprehensive review
of the analysis of phase models and their application to the study
of synchronization is given in [27].

In many systems there are time delays in the connections
between the oscillators due to the time for a signal to propagate
from one element to the other. In neural networks this delay is
attributed to the conduction of electrical activity along an axon
or a dendrite [12,15]. Much work has been devoted to the study
of the effect of time delays in neural networks. However, the
majority of this work has focussed on systems where the neurons
are excitable not oscillatory, (e.g., [28–33]), the networks have only
a few neurons (e.g., [9,12,34–36]) or focussed exclusively on syn-
chronization (e.g., [15,32,37–39]). Extensive work has been done
on networks of Stuart–Landau oscillators with delayed diffusive
coupling (e.g., [40,41]) where the model for the individual oscilla-
tors is the normal form for a Hopf bifurcation and thus the system
is often amenable to theoretical analysis. Numerical approaches to
study the stability of cluster solutions in delayed neural oscillator
networks have also been developed [39,42]. We note that there is
a vast literature on time delays in artificial neural networks which
we do not attempt to cite here.

Initial studies of phase models for systems with delayed cou-
pling consideredmodelswhere the delay occurs in the argument of
the phases [36,37,43–45]. However, it has been shown [12,46,47]
that for small enough time delays it is more appropriate to include
the time delay as phase shift in the argument of the coupling
function. Crook et al. [15] use this type of model to study a con-
tinuum of cortical oscillators with spatially decaying coupling and
axonal delay. Bressloff and Coombes [14,48] study phase locking
in chains and rings of pulse coupled neurons with distributed
delays and show that distributed delays result in phase models
with a distribution of phase shifts. They consider phase models
derived from integrate and fire neurons and the Kuramoto phase
model.

In this paper, we investigate the effect of time delayed coupling
on the clustering behavior of oscillator networks. The plan for our
article are as follows. In the next section we will review how a
general network model with delayed coupling may be reduced
to a phase model. In Section 3 we use the phase model to deter-
mine conditions for existence and stability of symmetric cluster
solutions in a network with a circulant coupling matrix, extending
some prior results [8,21,23] to systems with time delays and more
general coupling. In Section 4 we consider a particular application:
a network of Morris–Lecar oscillators. We derive the particular
phase model for this system and compare the predictions of the
phase model theory to numerical continuation and simulation
studies to determine when the weak coupling assumption breaks
down. We show that the time delay can induce multistability
between different cluster solutions and explore how changing the
coupling matrix affects this. In Section 5 we explore the effects of
breaking the symmetry of the connection matrix and introducing
multiple time delays on our results. In Section 6 we discuss our
work.

2. Reduction to a phase model

In this section, we review how to reduce a general model
for a network of all-to-all coupled oscillators with time-delayed
connections to a phase model. We assume the model for a single
oscillator
dX
dt

= F (X(t)), (1)

admits an exponentially asymptotically stable periodic orbit, de-
noted by X̂(t), with period T . Further, we denote by Z = Ẑ(t) the
unique periodic solution of the system adjoint to the linearization
of (1) about X̂(t) satisfying the normalization condition:

1
T

∫ T

0
Ẑ(t) · F (X̂(t))dt = 1.

Now consider the following network of identical oscillators
with all-to-all, time-delayed coupling

dXi

dt
= F (Xi(t)) + ϵ

N∑
j=1

wijG(Xi(t), Xj(t − τij)), i = 1, . . . ,N. (2)

Here G : Rn
× Rn

→ Rn describes the coupling between two
oscillators, ϵ is referred to as the coupling strength, andW = [wij]

is the coupling matrix. We assume wij ≥ 0.
When ϵ is sufficiently small and the wij are of order 1 with

respect to ϵ, we can apply the theory of weakly coupled oscillators
to reduce (2) to a phase model [10–12]. The way in which the time
delays enter into the phasemodel depends on the size of the delays
relative to other time constants in themodel. LetΩ = 2π/T . It has
been shown [12,46,47] that if the delays satisfy Ωτij = O(1) with
respect to the coupling strength ϵ, then the appropriate model is

dθi
dt

= Ω + ϵ

N∑
j=1

wijH(θj − θi − ηij) + O(ϵ2), i = 1, 2, . . . ,N, (3)

where ηij = Ωτij. That is, the delays enter as phase lags. The
interaction function H is a 2π-periodic function which satisfies

H(θ ) =
1
T

∫ T

0
Ẑ(s) · G(X̂(s), X̂(s + θ/Ω)) ds

with X̂, Ẑ as defined above.
To study cluster solutions we will make two simplifications.

First, we assume that all the delays are equal:

τij = τ , i.e., ηij = η. (4)

Second,wewill assume the network has some symmetry. In partic-
ular, we will consider the coupling matrix to be in circulant form:

W = circ(w0, w1, w2, . . . , wN−1), equivalently,
wij = wj−i (mod N). (5)

Following [23], we will say the network has connectivity radius
r , if wk > 0 for all k ≤ r , and wk = 0 for all k > r . For example,
a network with nearest neighbor coupling has connectivity radius
r = 1. Our results will be derived with the coupling matrix (5), but
can be applied to coupling with any connectivity radius by setting
the appropriate wk = 0.

We will also assume there is no self coupling, w0 = 0, as
this generally the case in applications. The results are essentially
unchanged if we include it [49]. These simplifications will apply
for the next two sections. In Section 5, wewill return to the general
model (3).
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