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h i g h l i g h t s

• We prove that the nonlinear equation of the capillary rise has a unique and global solution.
• Small time asymptotics of the solution is found.
• A rigorous proof of the existence of a solution’s behaviour transition is given.
• An estimate on the size of the basin of attraction is established.
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a b s t r a c t

In this paper we analyse a singular second-order nonlinear ODE which models the capillary rise of a
fluid inside a tubular column. We prove global existence, uniqueness and find several approximations
along with the asymptotic behaviour of the solution. Moreover, we are able to find a critical value
of the nondimensional parameter for which the solution exhibits a transition in its behaviour: from
being monotone to oscillatory. This is an analytical rigorous proof of the experimentally and numerically
confirmed phenomenon.
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1. Introduction

Capillary rise in a narrow vertical tube is a remarkable phys-
ical phenomenon that can be observed in a number of everyday
situations. One of the most common natural examples of capillary
action is water transport in soil or plants. In view of the use of
capillary flow in industrial applications, the appropriate mathe-
matical models of its behaviour become increasingly important.
One of the most celebrated equations modelling the dynamics of
capillary rise was introduced by E.W. Washburn in 1921 (see [1]).
His result, the Washburn equation, is a very useful simplification
of the liquid rise in the capillary tube. Parallel to the theoretical
modelling, many experiments discovered that for certain fluids
their free boundary oscillates near the equilibrium (rather that
monotonically approach it) [2] and [3].

We can distinguish two dynamical regimes of the fluid flow
in a capillary rise experiment. Those regimes correspond to the
situations where the fluid column height either increases or os-
cillates near the Jurin’s height (the point, where the capillary
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pressure balances the weight of a fluid). These situations depend
on the ratio of two dimensionless quantities, namely Ohnesorge
and Bond numbers. Experiments show (see for ex. [4] and [5]) that
there exists a critical value of the dimensionless parameter which
separates those both regimes (see [6] and [7]).

In the next sections we investigate the governing equation
of the capillary rise phenomenon. It is a singular second-order
nonlinear ODE for which we impose mathematically consistent
and physically meaningful initial conditions. The problem of pos-
ing a non-contradictory starting data seems to be nontrivial and
many authors propose different resolutions of this problem (see [8]
and [9]). In what follows we prove existence, uniqueness and
find the small-time asymptotics for a solution of the considered
equation. Moreover, transforming it into an autonomous system
we are able to find the exact value of the critical parameter, as well
as determine the rate at which the oscillations decay. We conclude
this paper with an estimate of the size of the basin of attraction of
the considered stationary point.

There is an extensive literature concerning nonlinear oscilla-
tions modelled by differential equations. The fundamental mono-
graph [10] contains a collection of mathematical results on
dynamical systems and chaos. On the other hand, [11] has a more
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applied flavour. Many authors have contributed to the theory by
proving a number of theorems concerning conditions sufficient for
oscillatory motion described by ordinary second-order equations
(see for ex. [12–14]) and also, their delay [15] and impulsive
generalizations [16]. As for the nonlinear world, throughout the
last several decades, a number of different classes of oscillations
have been thoroughly investigated (notably: chaos theory, which
we do not consider here). We would like to mention only a few
classical papers from which [17] was one of the first giving os-
cillations theorems for a particular class of nonlinear equations.
These results were further generalized in [18–20]. Some recent
advances concern oscillation theorems for delay [21] and neutral
equations [22,23], fractional equations [24–26], problems derived
from p-Laplacian [27] and analysis on time-scales [15].

2. Model and nondimensionalization

To find the governing equation for the capillary rise inside a
tube we have to balance all the forces acting on a fluid column.
Assuming that the cross-section of the tube is constant, we can
consider only the one-dimensional version of the problem. Forces
that take part in this process are of capillary, gravitational and vis-
cous nature. Following [8,28] and [29] we can derive the governing
equation as a consequence of the Newton’s second law
8µ
r2

hh′
+ ρgh + ρ

d
dt

(
hh′
)

=
2γ cos θ

r
, (1)

where h = h(t) is the liquid column height at time t , µ is the
viscosity, ρ is the density, γ is the surface tension, θ being the
contact angle while r radius of the capillary tube. As usual, g
denotes the gravitational acceleration. Going from left to right,
the terms in (1) are related to: viscosity (Hagen–Poiseuille flow),
hydrostatic pressure, inertia and capillary action (Young–Laplace
law) respectively. Further, we introduce the constant he which is
the so-called Jurin height [3] and is equal to

he =
2γ cos θ

rρg
. (2)

This is precisely the height atwhich the capillary force balances the
weight of a liquid. As can also be seen from Eq. (1) Jurin’s height is
the anticipated steady-state solution of the governing equation.

Now we proceed to the non-trivial task of choosing the initial
conditions. For the starting value of the liquid height we take

h(0) = 0, (3)

while, to get the initial value for the velocity we should make a
certain assumption guaranteeing thewell-posedness. If we rewrite
the last term in (1) in the form d

dt

(
hh′
)

= h
′2

+ hh′′, our governing
equation becomes
8µ
r2

hh′
+ ρgh + ρ(h

′2
+ hh′′) =

2γ cos θ
r

. (4)

After putting t = 0 we can compute the initial condition for the
velocity, namely

h′(0) =

√
2γ cos θ
ρr

. (5)

Notice that assuming vanishing initial height, the above formula is
the only choice we canmake in order to state a consistent problem.
In [8] a somewhat different approach has been proposed: the initial
velocitywas also set to zero. On the other hand, ifwe substitute this
value along with initial condition for the height, a contradiction in
(4) will occur.

Another, and more physical, choice of the initial condition is
based on an assumption that at the beginning of the experiment

the fluid velocity is zero. Then, due to the entrance effect the initial
height is proportional to the Jurin’s height and is fixed by the tube’s
radius. Specifically,

h(0) = αhe, h′(0) = 0, (6)

for some 0 < α < 1 dependent on the experimental set-up. A
thorough discussion of the appropriate initial conditions for the
capillary rise experiment has been given in [5,2,9], where both of
the above remedies for the initial singularity of (1) were explained.
As will be explicitly noted below, almost all of our results are
independent of the specific choice of the initial conditions. In what
follows, for the sake of simplicity, we shall use (3) with (5) and
remark, where appropriate, how our proofs can be modified to
account for (6).

To end our preparations we will cast the model into a dimen-
sionless form. The correct and usual scaling is the following

H =
h
he
, T =

t
τ
, (7)

where he is the Jurin’s height (2) while τ is the specific time scale
to be chosen next. This scaling along with (1) yields

8µh2
e

r2τ
HH ′

+ ρgH +
ρh2

e

τ 2

(
HH ′

)′
= Pc, (8)

where, as a slight abuse of notation, the prime denotes differentia-
tion with respect to T . Since, in usual situations, the main balance
is between the capillary and hydrostatic forces, we take

τ =
8µPc
ρ2g2r2

, (9)

which transforms (8) and initial conditions (3) and (5) into

HH ′
+ H + ω

(
HH ′

)′
= 1, (10)

and the initial conditions

H(0) = 0, H ′(0) =
1

√
ω
, (11)

for the dimensionless parameter

ω =
ρ2gr4

64µ2he
. (12)

3. Analytical results

In this section we will prove our main results concerning esti-
mates, transition of the behaviour and the stability of the solution
to (10).

3.1. Existence, uniqueness and estimates

First, we present a technical lemma giving a simplification of
the governing equation. It will be useful in the following consider-
ations.

Lemma 1. The problem (10) with initial conditions (11) can be
transformed via u(s) =

1
2H(T )2 with s = T/

√
ω into

u′′
+

1
√
ω
u′

+
√
2u = 1, (13)

with

u(0) = 0, u′(0) = 0. (14)

Once again, prime denotes a differentiation with respect to the inde-
pendent variable, which here is taken to be s.
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