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h i g h l i g h t s

• We deal with 4-wave Hamiltonian systems in the framework of wave turbulence.
• Averaging technique based on the Feynman–Wyld diagrams.
• Kinetic limit : leading order equations for the statistics evolution are derived.
• Random-phase and random-phase and amplitude properties preserved in time.
• Powerful tool to investigate many relevant physical systems.
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a b s t r a c t

A general Hamiltonianwave systemwith quartic resonances is considered, in the standard kinetic limit of
a continuum of weakly interacting dispersive waves with random phases. The evolution equation for the
multimode characteristic function Z is obtainedwithin an ‘‘interaction representation’’ and a perturbation
expansion in the small nonlinearity parameter. A frequency renormalization is performed to remove
linear terms that do not appear in the 3-wave case. Feynman–Wyld diagrams are used to average over
phases, leading to a first order differential evolution equation for Z . A hierarchy of equations, analogous
to the Boltzmann hierarchy for low density gases is derived, which preserves in time the property of
randomphases and amplitudes. This amounts to a general formalism for both theN-mode and the 1-mode
PDF equations for 4-wave turbulent systems, suitable for numerical simulations and for investigating
intermittency. Some of the main results which are developed here in detail have been tested numerically
in a recent work.

© 2017 Elsevier B.V. All rights reserved.

1. Introduction

Wave Turbulence (WT) theory concerns the dynamics of dispersive waves that interact nonlinearly over a wide range of scales [1]. In
general the nonlinear interaction can be considered small, allowing a perturbative analysis and then an asymptotic closure for statistical
observables [2]. For this reason, sometimes one then talks about Weak Wave Turbulence (WWT). Until recently, most of the attention
was given to the energy spectrum, which is governed by a kinetic equation. Wave turbulence also provides exact solutions of the kinetic
equation, which are related to equipartition, Rayleigh–Jeans solution, or stationary cascade, Kolmogorov–Zakharov solutions [3]. Many
physical phenomena are studied within this general framework, for instance gravity [4–7], capillary or Alfvèn waves [8–11], non-linear
optics [12] and elastic plates [13–15]. Furthermore, applications of WT to non dispersive systems such as the acoustic waves [16,17] exist,
even though the necessary statistical closure is subtler in such cases [18,19].

In the last years, many experiments and numerical simulations were performed to verify the predictions ofWT. The picture is relatively
clear in the case of the capillarywaves on a fluid surface (water, ethanol, liquid hydrogenor liquid helium): both experiments andnumerical
simulations confirm the Kolmogorov–Zakharov spectrum predicted by WT in this case. For other cases, e.g. surface gravity waves or
waves in vibrating elastic plates, the picture is more complicated: both numerics and experiments showed deviations from theoretical
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predictions, and the presence of intermittency [20–23]. This was unexpected, sinceWT appears as a mean-field theory, based on an initial
‘‘quasi-Gaussianity’’, previously believed to prevent sensible deviations from Gaussianity.

An important step forward in this context has been the development of a more efficient formalism for non-Gaussian wavefields
[1,24–26]. In particular, these works pointed out that probability density functions (PDF) are the relevant statistical objects to be analyzed,
reviving the interest in the study of PDFs in WT, that dates back to the works of Peierls, Brout, Prigogine, Zaslavskii and Sagdeev [27–29].
These authors had consideredwaves in anharmonic crystals, which constitute a special case of 3-wave systems. In the recent developments
a diagrammatic approach was proposed [1], based on Zakharov’s pioneering work [30,31], to analytically investigate PDF equations.
Importantly, this has also clarified the role of the different assumptions needed for the statistical closure. In particular, the 3-wave resonant
systems has been studied in detail and a Peierls equation for the N-particles PDF has been proposed [1,24,25].

Nevertheless, the Peierls equation does not guarantee the strict preservation of the independence of phases and amplitudes, even
though it can be argued that the property of random phases and amplitudes (RPA) is preserved in a weaker form [1,32]. Starting from
these premises, it has been shown that a proper normalization of the wave amplitudes is necessary for 3-wave resonant systems, in order
to obtain a finite spectrum in the infinite-box limit, that leads to an amplitude density, dependent on the continuous variable k [33].
In particular, the original amplitudes must be normalized by a factor scaling as 1/V , where V is the volume of the box. Adopting such
a point of view, the Peierls equation for the multimode PDFs is not the leading-order asymptotic equation of the continuum limit of
weakly interacting, incoherent waves. In Ref. [33], then, new multimode equations were derived, that importantly have the factorized
exponential solutions excluded by the Peierls equation. This is equivalent to the preservation of the RPA property. In turn, the preservation
of exponential solutions implies a law of large numbers (LLN) for the empirical spectrum at times τ > 0, which is analogous to the
propagation of chaos of the BBGKY hierarchy in the kinetic theory of gases. This LLN implies that the empirical spectrum satisfies the
wave-kinetic closure equations for nearly every initial realization of random phases and amplitudes, without necessity of averaging. Just
as the Boltzmann hierarchy has factorized solutions for factorized initial conditions, so does the kinetic wave hierarchy for all multi-point
spectral correlation functions. An H-theorem corresponding to positive entropy variation holds as well. On the other hand, using these
multimode equations, Ref. [33] shows that the 1-mode PDF equations are not altered by the different normalization, if the modes initially
enjoy the RPA property.

The 4-wave case has not yet been dealt with, although a formal analogy has been used to propose a possible extension of the 3-wave
result to the 4-wave case [32]. Therefore, the present paper is devoted to the case of 4-wave interactions, which is of particular interest. As a
matter of fact, most of the known violations of Gaussianity arise in gravitywaves and in vibrating elastic plates, which are 4-wave resonant
systems. Following the same diagrammatic approach of Ref. [1], and using the normalization proposed in Ref. [33], we first explicitly derive
the continuous multimode equations, and then we obtain the equation for theM-mode PDF equation. These equations are different from
the Peierls equations obtained by the formal analogy of Ref. [32]; they constitute instead a direct extension of the 3-wave case treated in
Ref. [33]. The relation between the Peierls and our equations is thus discussed, showing the limit in which they coincide. Our framework
also sheds some light on the issue ofWT intermittency, as demonstrated by a companion paper [34], in which the equations obtained here
are confirmed by numerical simulations of two 4-wave resonant Hamiltonian systems.

This work is organized as follows. First, we describe ourmodel and notation, which are consistent with previous works [1,33]. Section 2
discusses the probabilistic properties of RPA fields. The main results of this paper are reported in Sections 3 and 4, where the multimode
equations are derived and discussed. In Section 3 the spectral generating functional and correlation functions are considered, while
Section 4 concerns the PDF generating function and the multipoint PDFs. Section 5 summarizes our results. Technical details are provided
in Appendix A, Appendix B, and Appendix C, in which we also briefly explain the diagrams used to calculate the averages.

1.1. Model and notation

Similarly to [33], we consider a complexwavefield u(x, t) in a d-dimensional periodic cubewith side L. This field is a linear combination
of the canonical coordinates and momenta. It is assumed that there is a maximum wavenumber kmax, to avoid ultraviolet divergences.
This can be achieved by a lattice regularization with spacing a = L/M, for some large integerM, so that kmax = π/a. The location variable
x then ranges over the physical space

ΛL = aZd
M , (1)

with the usual notation ZM for the field of integers, moduloM. This space has volume V = Ld. The dual space of wavenumbers is

Λ∗L =
2π
L

Zd
M (2)

with kmin = 2π/L. The total number of modes is N = Md, so that V = Nad. The following index notation will be used:

uσ (x) =
{
u(x) σ = +1
u∗(x) σ = −1 (3)

for u and its complex-conjugate u∗. Likewise, we adopt the convention for (discrete) Fourier transform:

Aσ (k) =
1
N

∑
x∈ΛL

uσ (x, t) exp(−iσk · x) (4)

so that A+(k) and A−(k) are complex conjugates. This quantity converges to the continuous Fourier transform 1
Ld
∫
[0,L]d d

dx uσ (x, t)
exp(−iσk · x) in the limit a→ 0. The discrete inverse transform is

uσ (x) =
∑
k∈Λ∗L

Aσ (k) exp(iσk · x). (5)
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