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h i g h l i g h t s

• Capture into resonance for the resonant Klein–Gordon chain is studied.
• The threshold values of the structural and excitation parameters are determined.
• An effect of the slow modulation of the external frequency is investigated.
• Explicit asymptotic approximations to the quasi-steady solutions are derived.
• The asymptotic approximations agree with the exact (numerical) results.

a r t i c l e i n f o

Article history:
Received 18 September 2016
Received in revised form 4 August 2017
Accepted 3 October 2017
Available online 12 October 2017
Communicated by G. Stepan

Keywords:
Nonlinear oscillations
Asymptotic methods
Autoresonance

a b s t r a c t

In this work we examine autoresonant oscillations in a Klein–Gordon chain of finite length. The chain
is subjected to an external periodic forcing with a slowly varying frequency applied at one edge of the
chain. Explicit asymptotic equations describing the amplitudes and the phases of oscillations are derived.
These equations demonstrate that, in contrast to the chains with linear attachments, the nonlinear chain
can be entirely captured into resonance provided that its structural and excitation parameters exceed
their critical thresholds. It is shown that at large times the amplitudes of AR oscillations converge to
a monotonically growing mean amplitude that is equal for all oscillators. The threshold values of the
structural and excitation parameters, which allow the emergence of autoresonance in the entire chain,
are determined. The derived analytic results are in good agreement with numerical simulation.

© 2017 Elsevier B.V. All rights reserved.

1. Introduction

In this work we investigate the emergence of high-energy au-
toresonant (AR) oscillations in a Klein–Gordon chain of identical
linearly coupled Duffing oscillators. The chain excited by a har-
monic force with a slowly varying frequency applied at an edge
of the chain.

An idea of autoresonance, or ‘‘resonance under the action of
a force produced by the system’s itself’’ was first suggested by
Andronov, Vitt and Khaikin [1]. In particular, it was shown that
the proper modulation of structural and/or excitation parameters
may lead to the occurrence of AR in a nonlinear oscillator. After
first studies for the purposes of particle acceleration [2–4], a large
number of theoretical approaches, experimental results and appli-
cations of AR in different fields of natural science, from plasmas
to nonlinear optics and hydrodynamics, have been reported in
literature (see, e.g., [5–7] and references therein). The analysis
was first concentrated on the study of AR in a single nonlinear
oscillator but then it was extended to the systems with two- or
three-degree-of freedom (2DOF or 3DOF) systems. Examples in
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this category are excitations of continuously phase-locked plasma
waves with laser beams [8], particle transport in a weak external
field with slowly changing frequency [9], isotope separation pro-
cess [10], control of nanoparticles [11], etc. It is important to note
that multidimensional nonlinear nonstationary systems seldom
yield the explicit analytical solutions needed for understanding
andmodeling the transition phenomena, so that these studies have
not suggested any general conclusions concerning the occurrence
of AR in multidimensional systems.

In most of previous studies, AR in the forced oscillator was
considered as an effective tool for exciting high-energy oscillations
in the entire array. However, recent results [12,13] have shown
that this principle is not universal because capture into resonance
of amulti-particle chain is amuchmore complicated phenomenon
than a similar effect for a single oscillator [14] and the behavior
of each element in the chain may differ from the dynamics of a
single oscillator. This effect was recently analyzed for oscillator
arrays, which comprise a chain of time-invariant linear oscillators
weakly coupled to a nonlinear actuator [12,13]. It was shown that
external periodic forcing with slowly-varying frequency gives rise
to AR only in the excited nonlinear oscillator (the actuator), while
the response of the linear attachment remains bounded.
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This work demonstrates that, in contrast to the above-
mentioned examples, the nonlinear chain can be entirely captured
into resonance. The difference in the dynamics of these two types
of systems is closely connected with their resonance properties.
High-energy resonant oscillations in a linear time-invariant oscil-
lator are generated by an external force, whose frequency is equal
or close to the natural frequency of the oscillator but deviations
of the forcing frequency result in escape from resonance. On the
contrary, the natural frequency of a nonlinear oscillator changes
as its amplitude changes, so that the oscillator may stay captured
into resonance with its drive if the driving frequency vary slowly
in time to be consistent with the slowly changing frequency of the
oscillator. The ability of a nonlinear oscillator to stay captured into
resonance due to variance of its structural or excitation parameters
is termed autoresonance (AR), or nonstationary resonance.

It was shown in recent papers that the emergence and stability
of AR in a single Duffing oscillator [14] as well as in two coupled
oscillators [15] directly depend on the forcing and coupling pa-
rameters. It was demonstrated both theoretically and numerically
that AR can occur only if the considered parameters exceed a
certain threshold. Our consideration of a multi-particle chain is
also focused on the study of the threshold phenomena, with the
purpose to identify a set of parameters allowing stable AR in the
entire chain.

In this paper, the analysis of AR is motivated by the results
earlier obtained in the study of a Klein–Gordon chain subjected to
periodic forcingwith constant frequency [16]. Section 2 introduces
the equations of the chain dynamics. As in the case of periodic
excitation [16], the small parameter of the system is defined as
dimensionless frequency detuning. The procedure of averaging
yields a set of equations for the slow envelopes and phases of
resonant oscillations. In Section 3 we analytically calculate the
steady-state amplitudes and phases of oscillations. Both analytical
results and numerical simulations demonstrate that in the main
approximations all amplitudes converge to a slowly increasing
quasi-steady value equal for all oscillators thus demonstrating
equipartition of energy at large times. In Section 4 the critical
thresholds for the structural and excitationparameters are derived.
Numerical examples are discussed in Section 5.

2. The model

The chain dynamics is governed by the following equations:

d2u1

dt2
+ ω2u1 + γ u3

r + κ(u1 − u2) = A cos θ (t),

d2ur

dt2
+ ω2ur + γ u3

r + κ(2ur − ur+1 − ur−1) = 0,

r = 2, . . . , n − 1,
d2un

dt2
+ ω2un + γ u3

r + κ(un − un−1) = 0,

dθ
dt

= ω + ζ (t), ζ (t) = k1 + k2t.

(2.1)

Here and below, the variable ur denotes the position of the
rth oscillator; ω2

= c/m, m and c being the mass and the linear
stiffness of each oscillator; γ >0 is the cubic stiffness coefficient;
the coefficient κ represents the stiffness of linear coupling between
the oscillators. The first oscillator is subjected to periodic forcing
with amplitude A and time-dependent frequency Ω(t) = ω +

ζ (t), where ζ (t) = k1 + k2t; the parameters k1 >0 and k2 >0
denote initial constant detuning and detuning rate, respectively.
Note that the array (2.1) may be considered as an example of a

microelectromechanical system (MEMS) with a broad spectrum of
applications (see, e.g., [17] and references therein).

We reduce (2.1) to the formmore convenient for further analy-
sis. First, assuming small initial frequency detuning, we introduce
the small parameter of the system ε = k1/ω, 0<ε≪ 1. Then, tak-
ing into consideration the resonance properties of the oscillators,
we introduce the following rescaled parameters:

τ0 = ωt, τ = ετ0,

γ = 8εαω2, A = 2εFω2, κ = 2εkω2, k2 = 2ε2βω2. (2.2)

In these notations, the equations of motion take the form

d2u1

dτ 20
+ u1 + 8εαu3

1 + 2εk(u1 − u2) = 2εF sin θ (τ0, ε),

d2ur

dt2
+ ur + 8εαu3

r + 2εk(2ur − ur+1 − ur−1) = 0,

r = 2, . . . , n − 1,
d2un

dτ 20
+ un + 8εαu3

n + 2εk(un − un−1) = 0,

dθ
dτ0

= 1 + εζ0(τ ), ζ0(τ ) = 1 + βτ .

(2.3)

The system is assumed to be initially at rest, i.e. θ = 0, ur = 0,
vr =

dur
dτ0

= 0 at τ0 = 0 (r = 1, . . . , n). We recall that zero initial
conditions identify the so-called Limiting Phase Trajectories (LPTs)
corresponding tomaximumpossible energy transfer from a source
of energy to a receiver (see, e.g., [18,19] and references therein).

Asymptotic solutions of Eqs. (2.3) for small ε are derived with
the help of the multiple time scale formalism [20]. First, we in-
troduce the dimensionless complex-conjugate vector envelopes
Ψ and Ψ ∗ with components Ψr ,Ψ

∗
r , r = 1, . . . , n, and related

dimensionless parameters by formulas

Ψr = Λ−1(vr + iur )e−iθ ,Ψ ∗

r = Λ−1(vr − iur )eiθ ,

Λ = (1/3α)1/2, f = F/Λ, µ = k/Λ.
(2.4)

It follows from (2.4) that the real-valued dimensionless amplitudes
and phases of oscillations are given by ãr = |Ψr | and ∆̃r = argΨr ,
respectively.

Substituting (2.4) into (2.3), we obtain the following equations
for the envelopes Ψr :

dΨ1

dτ0
= −iε[(ζ0(τ ) − |Ψ1|

2)Ψ1 − µ(Ψ1 − Ψ2) + f + G1],

dΨr

dτ0
= −iε[(ζ0(τ ) − |Ψr |

2)ψr − µ(2Ψr − Ψr−1

−Ψr+1) + Gr ], 2 ≤ r ≤ n − 1,
dΨn

dτ0
= −iε[(ζ0(τ ) − |Ψn|

2)Ψn − µ(Ψn − Ψn−1) + Gn],

(2.5)

with initial conditions Ψr (0) = 0, r = 1, . . . , n. The coefficients Gr
include fast harmonics with coefficients depending on Ψ and Ψ ∗

but an explicit expression of these coefficients is insignificant for
further analysis.

In order to construct asymptotic approximations to the solu-
tions of (2.5), we employ the multiple time scale approach [20].
First, the following asymptotic decomposition of the variables Ψr
is introduced:

Ψr (τ0, τ , ε) = ψr (τ ) + εψ (1)
r (τ0, τ ) + O(ε2), r = 1, . . . , n, (2.6)

with the leading-order terms ψr (τ ) being the slow envelopes. The
equations for ψr (τ ) can be obtained by straightforward averaging
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