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h i g h l i g h t s

• DSWs in KP and 2DBO equations are considered for parabolic front initial data.
• KP and 2DBO equations are reduced to cKdV and cBO equations.
• Whitham modulation systems for cKdV and cBO equations are derived.
• Numerics of Whitham systems are compared with numerics of cKdV/cBO equations.
• Numerics of KP/2DBO equations are compared with numerics of cKdV/cBO equations.
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a b s t r a c t

Dispersive shock waves (DSWs) in the Kadomtsev–Petviashvili (KP) equation and two dimensional
Benjamin–Ono (2DBO) equation are considered using step like initial data along a parabolic front.
Employing a parabolic similarity reduction exactly reduces the study of such DSWs in two space one
time (2 + 1) dimensions to finding DSW solutions of (1 + 1) dimensional equations. With this ansatz,
the KP and 2DBO equations can be exactly reduced to the cylindrical Korteweg–de Vries (cKdV) and
cylindrical Benjamin–Ono (cBO) equations, respectively. Whithammodulation equations which describe
DSW evolution in the cKdV and cBO equations are derived and Riemann type variables are introduced.
DSWsobtained from the numerical solutions of the correspondingWhithamsystems anddirect numerical
simulations of the cKdV and cBO equations are compared with very good agreement obtained. In turn,
DSWs obtained from direct numerical simulations of the KP and 2DBO equations are compared with the
cKdV and cBO equations, again with good agreement. It is concluded that the (2+1) DSW behavior along
self similar parabolic fronts can be effectively described by the DSW solutions of the reduced (1 + 1)
dimensional equations.

© 2016 Elsevier B.V. All rights reserved.

1. Introduction

In recent years the study of dispersive shock waves (DSWs) has
generated considerable interest. In water waves DSWs have also
been termed undular bores [1,2]. In fact, an early observation of
an undular bore goes back to 1850 [3]. In plasma physics a care-
ful observation of a DSW, sometimes referred to as a collisionless
shock wave, was made over 40 years ago [4]. More recent experi-
ments/observations of DSWs have been carried out in other fields,
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e.g. Bose–Einstein condensates (BEC) [5,6] and nonlinear optics
[7–9]. Mathematically speaking the study of DSWs is difficult since
the profile of the shock wave is highly oscillatory and the underly-
ing shock solution does not converge strongly. A prototypical ex-
ample of a DSW occurs in the KdV equation

ut + uux + ϵ2uxxx = 0 (1.1)

with ϵ2
≪ 1 and initial conditions corresponding to a simple unit

step (Heaviside) function. In 1974, employing an averagingmethod
pioneered by Whitham [10], Gurevich and Pitaevskii [11] gave a
detailed description of the associated DSW. About 10 years later
Lax and Levermore [12] described the DSW rigorously via inverse
scattering transform methods. Over the years there have been nu-
merous important analytical studies that employ Whitham meth-
ods cf. [11,13–16].
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Here we study two space one time (2 + 1) dimensional
equations, including the Kadomtsev–Petviashvili (KP) [17] and the
two dimensional Benjamin–Ono (2DBO) [18] equations (see Eqs.
(2.1) and (2.2)), by employing a parabolic similarity reduction
and thereby exactly reducing these equations to the (1 + 1)-
dimensional cylindrical KdV (cKdV) and cylindrical Benjamin–Ono
(cBO) equations (see Eqs. (2.19) and (2.20)) respectively. We note
that 2 + 1 dimensional NLS type equations and associated DSW
solutions were analyzed by reducing them to associated 1 + 1
dimensional systems [19,20]. The goal of this paper is to shed
light on KP dynamics when there is step like data along parabolic
front in the initial data. Step like initial data is often termed as
a Riemann problem in shock wave studies. Implications of the
importance of parabolic type fronts in the KP equations can be
found in Refs [21,22]. As mentioned above, it is noteworthy that
applications to multidimensional shallow water bores seem to
have similar structure [23]. More general initial data given along
such fronts will require a more general approach to Whitham
theory; this analysis is outside the scope of this paper.

We analyze the cKdV/cBO equations via Whitham theory and
deriveWhithammodulation equations; these equations are trans-
formed into simpler form by introducing appropriate Riemann
type variables. These Whitham equations in Riemann variables
are not in diagonal hydrodynamic (i.e. diagonal conservation sys-
tem [24]) form. We remark that in the cKdV case a diagonal hy-
drodynamic form may be obtained using the integrability of cKdV
[25–27]; on the other hand, neither 2DBOnor its reduction, the cBO
equation is known to be integrable.

We study the DSWs in the cKdV and cBO equations numerically
and describe their differences from the DSWs in the classical KdV
and BO equations. Indeed the DSWs in the former are found to
decay slowly in timewhereas those in the latter do not exhibit such
temporal decay. We find that direct numerical simulations of the
Whithammodulation equations agree well with those of the cKdV
and cBO equations.

We then compare these (1 + 1) dimensional DSW structures
to direct numerical simulations of the (2 + 1) dimensional KP and
2DBO equations. After fixing parameters our comparisons between
1+1 numerics/theory and 2+1 numerics exhibit very good results.
In general the DSW weakens across the parabolic front as time
increases. We also note that the numerical simulations of 1 + 1
Whitham theory which removes the fast variation, aremuch faster
than the 1 + 1 cKdV/cBO equations which in turn, are orders of
magnitude faster than the 2 + 1 equations.

Over the years there have been many numerical studies and
calculations associated with the KP equation cf. [28–32].

Our interest is to study DSW systems which have step like
data across a parabolic front; this is analogous to the well known
Riemann or shock tube problem in classical shock waves. We find
that indeed there are DSWs generated across the shock front. To
our knowledge this is the first time the nondecaying 2+1 analogue
of a Riemann problem for KP and 2DBO is analyzed in detail.

The reduction discussed here, which we also term parabolic
front tracking, was used [33,34] in the analysis of the Khokhlov–
Zabolotskaya (KZ) equation [35] (see also [36]). Indeed the
KP/2DBOequation in the limit of ϵ → 0 (zero dispersion in the xdi-
rection) reduces to the KZ equation.When viscosity is added to the
KZ equation the relevant shockwaves are strongly convergent. Our
study of the KP/2DBO DSWs requires critical use ofWhithammod-
ulation theory, which is necessary due to the weak convergence of
the DSWs. In the context of 2+1 dispersive systems connections to
cylindrical systems such as cKdV was also found [37] (cf. [38] and
refs included).

This paper is organized as follows. In Section 2 a parabolic simi-
larity reduction is used to exactly transform theKP and 2DBOequa-
tions to the cKdV and cBO equations along a parabolic front. In

Section 3 we employ perturbation theory [39] to find the conser-
vation laws associated withWhitham theory for the KdV and cKdV
equations. We then transform theWhithammodulation equations
employing Riemann-type variables; the resultingWhitham system
is not immediately in diagonal hydrodynamic form. We solve the
1+1Whitham systemassociatedwith theKdV and cKdV equations
numerically and reconstruct the DSW solutions of KdV and cKdV.
We then compare these results with direct numerical simulations
of KdV and cKdV and show that, apart from an unimportant phase
they are in very good agreement. We also note that the Whitham
equations for cKdV exhibit a small discontinuity. This discontinu-
ity would be resolved by taking into account higher order terms
(see [40]), but doing so is outside the scope of this paper. In Sec-
tion 4 the BO and cBO equations are analyzed in the same way as
KdV and cKdV are analyzed in Section 3. In Section 5 we compare
the 1 + 1 results for cKdV/cBO and the 2 + 1 results for KP/2DBO
by direct numerical simulations (see also [41,42] for numerics as-
sociated with KP). After accounting for an unimportant mean term
we again find excellent agreement; animations are also included
as part of our 2 + 1 description. Numerical implementation of the
2+1 KP/2DBO equations employ (regularized) step-like data along
a parabolic front; to avoid boundary interactions the front is taken
to decay at large distances. The results in a region around the x-axis,
consistentwith the eventual decay, approximatewell the parabolic
front. We conclude in Section 6.

2. Reduction of KP, 2DBO equations to cKdV, cBO equations

In this section, we examine DSW propagation associated with
two different (2 + 1) dimensional nonlinear partial differential
equations (PDEs). One is the Kadomtsev–Petviashvili (KP) equation
ut + uux + ϵ2uxxx


x + λuyy = 0 (2.1)

where ϵ, λ are constants. This equation was first derived by
Kadomtsev–Petviashvili (KP) [17] in the context of analyzing
the stability of the KdV soliton in a 2 + 1 setting subject to
weak transverse variations; subsequently it was derived in water
waves [43] where it describes the evolution of weakly nonlinear
two dimensional long water waves of small amplitude. When
|ϵ| ≪ 1 we have weak dispersion. According to the sign of λ,
Eq. (2.1) is usually termed KP-I (−) or KP-II (+), respectively. KP-
I describes the dynamics when the surface tension of the water is
strong andKP-II describes the dynamicswithweak surface tension.
The other equation we study is

(ut + uux + ϵH (uxx))x + λuyy = 0 (2.2)

where Hu(x) denotes the Hilbert transform:

Hu(x) =
1
π

P


∞

−∞

u(x′)

x′ − x
dx′ (2.3)

and P denotes the Cauchy principal value. We refer to Eq. (2.2) as
the 2DBO (Two Dimensional Benjamin–Ono) equation; it is a two-
dimensional extension of the classical BO equation and describes
weakly nonlinear long internal waves in fluids of great depth [18].

The goal in this paper is to enhance understanding of DSWs in
multidimensional systems. A general form for these two equations
is

(ut + uux + Fi(u))x + λuyy = 0; (2.4)

when F1(u) = ϵ2uxxx Eq. (2.4) is the KP equation andwhen F2(u) =

ϵH (uxx) it is the 2DBO equation. As an evolution Eq. (2.4) can be
written as

ut + uux + Fi[u] + λ∂−1
x uyy = 0 (2.5)
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