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h i g h l i g h t s

• Study a fully nonlinear dissipative/dispersive wave propagation model.
• Explore mean thickness threshold for traveling wave formation for viscous films.
• Compare threshold results to experiments.
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a b s t r a c t

Travelingwave solutions are studied for a recently-derivedmodel of a falling viscous filmon the interior of
a vertical rigid tube. By identifying a Hopf bifurcation and using numerical continuation software, families
of non-trivial traveling wave solutions may be traced out in parameter space. These families all contain
a single solution at a ‘turnaround point’ with larger film thickness than all others in the family. In an
earlier paper, it was conjectured that this turnaround point may represent a critical thickness separating
two distinct flow regimes observed in physical experiments as well as two distinct types of behavior in
transient solutions to the model. Here, these hypotheses are verified over a range of parameter values
using a combination of numerical and analytical techniques. The linear stability of these solutions is also
discussed; both large- and small-amplitude solutions are shown to be unstable, though the instability
mechanisms are different for each wave type. Specifically, for small-amplitude waves, the region of
relatively flat film away from the localized wave crest is subject to the same instability that makes the
trivial flat-film solution unstable; for large-amplitude waves, this mechanism is present but dwarfed by
a much stronger tendency to relax to a regime close to that followed by small-amplitude waves.

© 2015 Elsevier B.V. All rights reserved.

1. Introduction

The flow of falling liquid films is a topic of importance in several
disciplines including biology and engineering. These films have a
free surface whose evolution is governed by the interplay of body
forces (gravity) and surface stresses (due to the surface tension of
the free surface). Numerous modeling and experimental studies
have advanced understanding of these flows in a variety of regimes
corresponding to different parameter values (e.g., Reynolds
number, Bond number, etc.), and in a number of geometrical setups
including (i) along an inclined plane (e.g., [1,2]) and (ii) the exterior
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or interior of a vertical tube (e.g., [3–7]); see also [8]. The cylindrical
geometry of the tube is distinct from the planar case due to the
role of the free surface’s azimuthal curvature in setting the surface
stresses. This geometry is the focus of the current study, where we
further concentrate on the cylinder interior problem. In contrast
with its exterior film counterpart, this setup poses a natural limit to
the thickness of the film, corresponding to cases when the surface
tension azimuthal component drives the free surface all the way
to the cylinder axis. When this happens, plugs of fluid that can fill
sections of the tube are formed, up to the limit when the entire
tube is filled with liquid moving according to the Poiseuille flow
solution of the motion equations.

More specifically, the problem studied here is the gravity-
driven downward flow of a highly viscous liquid film that coats
the interior of a vertical rigid tube. While highly idealized, this
particular setup is of interest due to its potential relevance for
understanding the flow of the thin layer of mucus which lines
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Fig. 1. Snapshots of four experiments with ρ = 0.97 g cm−3 , µ = 129 P, γ = 21.5 dyn cm−1 , and a = 0.5 cm. The film thickness of each panel was measured to be
(a) h0 = 0.223 cm, (b) h0 = 0.256 cm, (c) h0 = 0.295 cm, and (d) h0 = 0.331 cm. (Each snapshot is rotated by 90°with respect to the actual experiment, so that acceleration
due to gravity acts from left to right.)
Source: Reproduced from [7].

human airways. The problem was studied experimentally in [7],
where a fixed volume flux of a high-viscosity silicone oil was fed
through an axisymmetric slit into the interior of a 40 cm long
vertical tube. Once the entire tube was coated with oil, the free
surface of the oil film was observed as it fell down the tube wall.

In these experiments, two distinct flow regimes were observed,
distinguished from one another by a critical film thickness (as
a function of other flow parameters). For relatively thick films,
the free surface was observed to be unstable, with disturbances
growing as they traveled down the tube until they ‘pinched off’
and formed liquid plugs clogging the tube; these plugs continued to
travel downwards, eventually exiting the bottom of the tube. For
thin films, the free surface either did not exhibit any observable
instability growth or showed instabilities that remained small
and did not clog the tube. In all observations, the film flow was
observed to be axisymmetric; see Fig. 1.

Strongly nonlinear models for the axisymmetric flow studied
here have typically been derived by assuming a small ratio of
lengthscales and fall into one of two categories. Thin-film models
rely on a small film thickness compared with the tube radius [3,9],
while long-wave models utilize a small film thickness relative to a
typical wavelength of free-surface disturbances [4,7]. See [10] for
further discussion of this classification.

We next summarize a single-PDE long-wave model recently
derived in [7]. The derivation of the model relies on both the
aforementioned small long-wave aspect ratio and an assumed
small Reynolds number so that inertia may be neglected. The
dimensional form of the model is

µRt = ρgf1(R; a)Rz +
γ

16R
[f2(R; a)(Rz + R2Rzzz)]z, (1)

where z is the independent axial coordinate and R(z, t)denotes the
position of the free surface. Here z is oriented so that gravity acts in
the positive z direction; r = 0 denotes the center of the tube and
r = a denotes the tube wall. Experimental parameters include the
fluid’s molecular viscosityµ, density ρ, and surface tension γ ; g is
acceleration due to gravity. Subscripts will be used throughout the
paper to denote partial derivatives, and the functions fi are given
by

f1(R; a) =
1
2
[R2

− a2 − 2R2 log(R/a)], (2a)

f2(R; a) = −
a4

R2
+ 4a2 − 3R2

+ 4R2 log(R/a). (2b)

The first term on the right-hand side (RHS) of (1) represents
the effects of gravity; the remaining two terms represent the
effects of surface tension acting through the azimuthal and axial

curvatures of the free surface, respectively. Themodel (1) may also
be expressed as a conservation law for the quantity R2,

8µ(R2)t = {f2(R; a)[−ρgR2
+ γ (Rz + R2Rzzz)]}z, (3)

so that the model conserves the volume π(a2 − R2) of the
fluid film. This conservation of volume is one of the features
distinguishing ‘long-wave’ models from most ‘thin-film’ models,
which usually conserve an approximate volume 2πa(a − R) in
this cylindrical geometry. For reference, the model equation is
given in dimensionless form as well in the Appendix, however in
what follows we will use the full dimensional form of the model
equations for the most part.

For each mean film thickness h0 = a − R0, there is a trivial
solution R(z, t) = R0 to (1). This constant free surface is unstable
to long-wave disturbances, consistent with linear stability results
for the governing equations in this and related setups [11–13];
specifically, if a disturbance of the form R = R0+A exp[i(kz−ωt)]
is introduced to the model equation (1), the resulting dispersion
relation is

ω = −
ρg
µ

f1(R0; a)k +
iγ

16µR0


f2(R0; a)(−k2 + R2

0k
4)


. (4)

Thus the flat solution is unstable to a band of small wavenumbers
0 < k < R−1

0 , with the fastest-growing wavenumber given by

km = (
√
2R0)

−1. (5)

The dispersion relation (4) has the same form as that of the well-
studied Kuramoto–Sivashinsky (K–S) equation, first shown to be a
limiting form of a model for film flow down an inclined plane [1,2]
by Sivashinsky and Michelson [14].

When the model (1) is solved numerically using periodic
boundary conditions and initial conditions consisting of a flat free
surface perturbed by a superposition of several small-amplitude
Fourier modes, the initial growth of the disturbances is well
described by (4). As the perturbations grow beyond the weakly
nonlinear regime, solutions exhibit one of two distinct types
of behavior. For relatively thin films, the disturbances saturate
as a series of traveling pulses which undergo various nonlinear
interactions with one another, but generally hold their shape and
propagate approximately as a coherent wave train. For thicker
films, however, the fastest-growing disturbance continues to grow,
apparently accelerated rather than saturated by nonlinearities in
the model. This wave crest grows until its amplitude approaches
the tube radius r = 0, with the latter stages of this growth
occurring very rapidly. Due to the cylindrical geometry present in
the model, as seen in the inverse powers and logarithms of R in
(1), solutions cannot be computed once this crest reaches the tube
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