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h i g h l i g h t s

• Interaction of a KdV soliton with a long wave is studied in a rotating ocean.
• Long background waves are sinusoidal wave and periodic sequence of parabolic arcs.
• The model dynamical system is derived and studied analytically and numerically.
• Solitons riding on long wave can propagate on long distances in a rotating ocean.
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a b s t r a c t

Interaction of a solitonwith long backgroundwaves is studiedwithin the framework of rotationmodified
Korteweg–de Vries (rKdV) equation. Using the asymptotic method for solitons propagating in the field
of a long background wave we derive a set of ODEs describing soliton amplitude and phase with respect
to the background wave. The shape of the background wave may range from a sinusoid to the limiting
profile representing a periodic sequence of parabolic arcs. We analyse energy exchange between a soliton
and the long wave taking radiation losses into account. It is shown that the losses can be compensated
by energy pumping from the long wave and, as the result, a stationary soliton can exist, unlike the case
when there is no variable background. A more complex case when a free long wave attenuates due to the
energy consumption by a soliton is also considered. Some of the analytical results are compared with the
results of direct numerical calculations within the framework of the rKdV equation.

© 2016 Elsevier B.V. All rights reserved.

1. Introduction

In this paper we study the interaction of a solitary wave
with a long background wave within the framework of the so
called rotation modified Korteweg–de Vries (rKdV) equation. This
equation was derived in 1978 [1] as the model describing long
surface and internal waves in rotating oceans. In the dimensional
variables the equation reads
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where the coefficients c0, α, β , and γ depend on the environmen-
tal parameters (water depth, stratification, etc.). This equation can
be considered as the generalisation of the classical Korteweg–de
Vries (KdV) equation, which follows from Eq. (1) when γ = 0.

Later on it was realised that Eq. (1) is fairly general since
it combines the effects of small quadratic nonlinearity and two
types of dispersion—the small-scale dispersion, proportional to β ,
and large-scale dispersion, proportional to γ . Similar equations
were derived for the description of weakly nonlinear waves in
random media [2], magnetosonic waves in rotating plasma [3],
waves in relaxing media [4], electromagnetic waves in nonlinear
transmission lines [5], and strain waves in elastic bi-layers [6].

Eq. (1) is, apparently, non-integrable, and even its stationary
solutions are not known thus far in the analytic form. Particular
numerical and approximate solutions were constructed in many
publications, see, for instance, [3,5,7–13]. Numerical studies have
shown that in some cases stationary solutions can be interpreted
as a superposition of a long periodic background wave described
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approximately by Eq. (1) with β = 0, and a solitary wave ap-
proximately representing KdV soliton which is a solution of Eq. (1)
with γ = 0; the examples are presented in [5,7,10,12,13]. In such
cases a soliton can ride on the crest or on the trough of the long
background wave. In the meantime, if the soliton amplitude is not
properly matchedwith the amplitude of the backgroundwave, the
soliton travels along the long wave periodically accelerating and
decelerating, growing and decaying [7].

One of the intriguing features of solitary wave dynamics within
the framework of rKdV equation is related to the fact that solitary
waves cannot exist within the framework of this equation with
βγ > 0 which is practically always the case for oceanic waves.
This is the result of the rigorous ‘‘antisoliton theorem’’ proven in
[14,15] and then in many other papers. However, as follows from
the aforementioned numerical results, solitary wavesmay exist on
a long background wave.

In what follows we present the asymptotic theory describing
the dynamics of a KdV soliton on the long background wave.
The background wave is taken as one of the particular solutions
of the reduced rKdV equation (1) with β = 0. As shown in
[1,5,10,16,17], there exists a family of exact periodic solutions
of the reduced rKdV equation. After giving general relationships
in Section 2, we consider soliton interaction with two limiting
representatives of the family of periodic solutions, viz., the
sinusoidal wave (Section 3) and the periodic sequence of parabolic
arcs (Section 4). Then, in Section 5 we present the results of
direct numerical simulation of soliton interaction with a periodic
background wave and discuss the results obtained in Section 6.

2. Interaction of a soliton with a long background wave

Solutions of the rKdV equation (1) essentially depend on the
sign of the dispersive coefficients β and γ . Asmentioned, for βγ >
0 (the ‘‘oceanic case’’), solitary waves with zero asymptotics at the
infinity do not exist. In the opposite case βγ < 0 (describing,
e.g., magnetosonic waves in a rotating plasma [3] and internal
waves in a rotating ocean with shear flows [18]) the ‘‘antisoliton
theorem’’ is not valid, and solitary waves can exist. Their structure
has been investigated in [3]. In this paper wewill consider only the
former case when βγ > 0.

Although the rKdV equation (1) is, apparently, nonintegrable, it
possesses many integrals of motion (see, e.g., [10] and references
therein). Here we will use one of them, the ‘‘zero mass’’ integral:

M ≡


υ(x, t)dx = 0. (2)

The integration here is taken either over the wave period for
periodic waves or over the entire axis x for localised solutions.
Note that in many other cases, including the KdV equation, the
‘‘wave mass’’ M can be an arbitrary constant which is determined
by initial conditions. In the case of rKdV equation, Eq. (2) is not just
the integral of motion, but rather a constraint which demands that
initial conditionsmust be consistentwith the zero-mass condition.
It should be pointed out, however, that the condition (2) may be
violated for singular solutions—for details see [17].

To achieve more universality, it is constructive to reduce Eq. (1)
to the dimensionless form. By means of transformation
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Eq. (1) can be reduced to (the primes in new variables x and t are
further omitted):
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Fig. 1. (Colour online) A family of zero-mass stationary periodic solutions of the
reduced rKdVequation (4)withΛ = 50,when the third-order derivative is omitted.
Line 1 pertains to quasi-sinusoidal wave with c = 64, line 2 illustrates a nonlinear
wave with c = 66, and line 3 represents a periodic sequence of parabolic arcs with
c = (25/3)2 ≈ 69.4.

We seek for a solution to this equation in the form u(t, x) =

u1(t, x) + u2(t, x), where u1(t, x) is a smooth periodic background
wave with the wavelength Λ, and u2(t, x) is a KdV soliton with
slowly varying amplitude and width (see below). As shown in the
Appendix, if the solitonwidth ismuch smaller than thewavelength
of the background wave, the equations for these functions can be
separated. First we assume that the function u1 is given and it
represents a particular stationary solution to the reduced Eq. (4)
in which the third-order derivative responsible for the small-scale
dispersion is omitted, i.e., u2 = u2(s = x−ct), where c is a constant
wave speed. This solution satisfies the equation
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The shape of this wave can vary from the small amplitude
sinusoidal wave to the limiting periodic wave in the form of a
sequence of parabolic arcs [1,5,10,16] (see Fig. 1); all waves of this
family have zero mean value.

As mentioned above, the term u2 in the trial solution describes
a narrow KdV soliton with the characteristic width ∆ ≪ Λ, which
satisfies Eq. (4) with zero right-hand side. As a result, we have the
following equation for the solution u2 (for details see Appendix):
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where u1 is given as a solution of Eq. (5). Here we neglect the
inverse impact of a soliton on the long background wave in Eq.
(5); this effect will be discussed later in this paper. At the same
time, the parameters of a solitary wavemay vary in space and time
depending on its position on the background wave.

Since, asmentioned, the characteristic solitonwidth is assumed
small, the background wave and its spatial derivative can be
considered locally constant in the vicinity of soliton maximum.
This allows one to seek a solution to Eq. (6) for u2 in the form of a
KdV solitonwith the parameters slowly varying in time: amplitude
A(t), width ∆(t), and ‘phase’ S(t):

u2 = A sech2 ζ − S
∆

− p, (7)

where the phase S is the soliton peak position with respect to a
certain point of the background wave profile, s = S, and

ζ = x −

 t

0
V dt, V =

A
3

− p + u1 (S) ,

∆ =


12
A

, p =
4
√
3A

Λ
.

(8)

In Eq. (7) p is a small negative pedestal which is added to satisfy
the zero-mass condition (2) on the interval [0, Λ]. However,within
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