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h i g h l i g h t s

• We observe dispersive shock waves in a shallow water tank.
• Different levels of nonlinearity and dispersion are contrasted.
• Data are compared with numerics based on the Korteweg–de Vries and Whitham equations.
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a b s t r a c t

We investigate surface gravity waves in a shallowwater tank, in the limit of long wavelengths. We report
the observation of non-stationary dispersive shock waves rapidly expanding over a 90 m flume. They are
excited by means of a wave maker that allows us to launch a controlled smooth (single well) depression
with respect to the unperturbed surface of the still water, a case that contains no solitons. The dynamics of
the shockwaves are observed at different levels of nonlinearity equivalent to a different relative smallness
of the dispersive effect. The observed undulatory behavior is found to be in good agreement with the
dynamics described in terms of a Korteweg–de Vries equation with evolution in space, though in the
most nonlinear cases the description turns out to be improved over the quasi linear trailing edge of the
shock by modeling the evolution in terms of the integro-differential (nonlocal) Whitham equation.

© 2016 Elsevier B.V. All rights reserved.

1. Introduction

Dispersive shock waves (DSWs) are non-stationary wave trains
that form spontaneously in weakly dispersive media [1]. The
underlying mechanism is the wave steepening driven by the
nonlinearity which leads to a gradient catastrophe, regularized by
dispersion that becomes important close to the point where strong
gradients are formed. Usually, the oscillations expand in a so-called
shock fan characterized by a leading edge and a trailing edge,
where the amplitude of the oscillations is largest and vanishingly
small, respectively. DSWs constitute the dispersive counterpart of
the viscous regularization of classical shock waves [2]; in the latter
the dissipation dominates over dispersive effects.
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Pioneering works on DSWs appeared between the 60’s and
the 70’s. Sagdeev and coworkers predicted the oscillatory na-
ture of the shock occurring in the extremely rarefied (collision-
less) plasma [3]. The observation of such dispersive breaking in
the lab was reported as early as 1970 [4]. In a seminal paper
for the whole area of nonlinear waves, Zabusky and Kruskal [5]
numerically investigated the evolution of a sine wave accord-
ing to the weakly dispersive Korteweg–de Vries (KdV) equation
[6–8], finding that the gradient catastrophe of the original wave-
form gives rise to oscillations which evolve into secondary waves
with soliton features, eventually exhibiting recurrence of the input
state after collisions [5]. Strictly speaking thewave packets emerg-
ing from the breaking of the periodic waves are multiple finite-
gap solutions [9] which, however, resemble solitons, especially in
the limit of weak dispersion where the Floquet bands dramatically
shrink. However, DSWs can form also for initial conditions which
possess no soliton content. A milestone towards a more general
description was the solution of the Riemann problem (the evolu-
tion of a step initial datum) for the KdV, reported by Gurevich and
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Pitaevskii [10], who proposed the first explicit construction of the
DSW by exploiting Whithammodulation theory [11]. The descrip-
tion of dispersive shocks still constitutes nowadays one of themost
prolific application of such general averaging method proposed by
Whitham.

The KdV has also played a pivotal role for the formulation of
the limit of vanishing dispersion in the framework of the inverse
scattering theory [12–16]. In particular the case of initial data with
non-soliton content was addressed in [17,18]. Note that this limit
is highly non-trivial since, at variance with the limit of vanishing
viscosity, in dispersive settings it never leads to the classical
(dispersionless) shock wave, since the oscillations become shorter
and denser as the dispersion get weaker. Nowadays the KdV still
remain a very important equation as it allows for testing more
accurate asymptotic descriptions of the oscillatory zone [19–21].
However, it was realized since the beginning that DSWs constitute
an ubiquitous behavior in several other dispersive Hamiltonian
systems [22–25]. A remarkable universal example is the nonlinear
Schrödinger (NLS) equation. In this context, experimental results
on DSWs have been recently reported in the field of Bose–Einstein
condensed atoms [26–31] and nonlinear optics [32–39]. Such
experiments have also contributed to clearly highlight the contrast
associated with solitonic-type of DSWs [26,36,39] (see also
[40–43] for theoretical aspects), and nonsoliton DSWs (e.g.,
[27,32–34]). It should be noted that DSWs are also observed in
nonintegrable systems, forwhichmodulation equations can be still
introduced, see for example [44].

In the context of water waves, DSWs (we stick to the term DSW
for interdisciplinary purpose, though in the literature in this area,
the term ‘‘undular bore’’ is more usually encountered) have also
a long dating history. Important theoretical contributions came
from Benjamin and Lighthill [45], Peregrine (who employed a
model known as Benjamin–Bona–Mahony (BBM) equation [46]),
and Johnson (who also investigated the effect of viscosity bymeans
of a KdV–Burger model [47]). The most common situation is that
of a bore moving into still water; for moderate amplitudes, it gives
rise to undular behavior while, for larger amplitudes, undulations
are still observed but the first wave is breaking. In the strongly
nonlinear regime, no undulations are observed and a turbulent
breaking front propagates. These phenomena can be observed in
nature, with spectacular manifestations involving tidal bores in
river estuaries (e.g., the Dordogne river in France, the Severn river
inWales, theQiantang river in China, etc.),where the undular bores
are also known under different local names [48].

Apparently, the laboratory investigations of undular bores was
pioneered by Favre as early as 1935 [49]. Indeed, the secondary
waves produced by the steep bore are also termed in hydraulic
applications as Favre waves [50,51]. However, it is again in the
seventies that laboratory experiments performed in shallowwater
with long waves have been reported and interpreted in terms
of KdV dynamics [52–57]. Later review of such experiments
have also pointed out the importance that the dynamics of the
generated wavetrains can have in the interpretation of seismic
generated tsunamis [58]. However, those experiments mainly
dealt with initially positive elevations above the water surface,
which produce multiple solitons. Only occasional observations
were reported for smooth depressions, a case which cannot be
interpreted in terms of generated solitons [53,55,56]. Moreover,
such measurements suffered from limitations arising from the
length of the wave-tank and by the technique used to launch the
waves, employing a vertically moving piston. In this paper, we
show that very extended and clean DSWs can be excited in a
long tank (90 m) by using a wave maker which allows for a good
degree of accuracy over the initial shape. In particular, we focus on
initial depressions with profile close to square hyperbolic secant.
In the initial stage where dispersion plays a negligible role, the

wave evolves according to the Hopf (or inviscid Burger) equation,
and experiences rarefaction on one edge and steepening over the
opposite edge. The DSW that emerges from the steepened front,
must be interpreted, in this case, as a genuinemodulated nonlinear
periodic function which is spontaneously generated due to the
action of dispersion. We characterize the expansion of such DSW,
comparing with numerical simulations based on a suitable form of
the KdV equation and its extension introduced by Whitham. The
regime that we investigate allows for observing a quite regular
and extended oscillatory zone. Conversely, the length of the tank
precludes the possibility to investigate the long-term asymptotic
where one could expectmajor differenceswith the case of solitonic
DSW (in the latter case, several solitons would asymptotically
separate, as it would be the case for a positive square hyperbolic
secant of proper amplitude). The characterization of the mid-term
DSW developing from the depression is also useful in view of
further studies devoted to study the interaction of genuine solitons
and DSWs which can occur for more general initial shapes.

The paper is organized as follows. In Section 2 we present
the asymptotic models that we employ in order to describe the
experiment, emphasizing that such models are written in such a
way to evolve time series in space. In Section 3 we present the
experimentally observed data, and in Section 4 we discuss the
numerical modeling of our observations. Finally, we summarize
our finding in Section 5.

2. The Korteweg–de Vries equation and theWhitham equation
in their spatial evolution form

The fully nonlinear viscous equations that describe the
evolution of surface gravity waves are definitely too much
complicated (even from a numerical treatment) to understand
basic mechanisms such as solitons, breathers or DSWs. Therefore,
approximations are needed if one is interested in capturing some
specific nonlinear wave dynamics. Indeed, Boussinesq [7] and
Korteweg and de Vries [6] made use of asymptotic methods for
deriving what is now known as the KdV equation (for discussion
on the differences between the methods used in the derivation
see [8]). Themotivation of their workwas the physical explanation
of the observation of the ‘‘Wave of Translation’’ made by Scott
Russell in 1834.

The classical derivation of the KdV equation (see for exam-
ple [2]) from the Navier–Stokes equations requires a number of
hypotheses: the fluid is considered inviscid and the flow irrota-
tional; waves have long wavelength and propagation in only one
direction is allowed. The key point in the derivation is the intro-
duction of two nondimensional parameters: the first one is the
nonlinear parameter, α = η0/h, where η0 is a characteristic wave
amplitude and h is the unperturbed water depth; the second one
is the dispersive or the shallow water parameter, β = kh, with
k a characteristic wave number of the problem under examina-
tion. ‘‘Waves of Translations’’ with a permanent form are the re-
sult of a balance between nonlinearity and dispersion, therefore
the KdV equation is obtained by balancing α and β . Note that if one
expands the unidirectional dispersion relation for water waves,
ω(k) =

√
gk tanh(kh), in powers of kh, i.e. in the shallow water

limit, at the leading order the dynamics turns out to be nondisper-
sive,ω =

√
gh k; therefore, if one is interested in balancing nonlin-

earity and dispersion, then one should choose α ∼ β2. This is the
fundamental assumption for the derivation of the KdV equation.

In dimensional variables the KdV equation takes the following
form:

ηt + c0ηz +
3
2
c0
h

ηηz +
1
6
c0h2ηzzz = 0 (2.1)

where c0 =
√
gh is the phase velocity of linear waves and z

the propagation coordinate. When dealing with experimental data
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