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h i g h l i g h t s

• Theoretical model of dry macroscopic friction has been developed.
• Model is based on the sine–Gordon modulation (Whitham) equations.
• Model connects the kinetic and dynamic parameters of the frictional process.
• Model describes seismic events in wide range of rupture and slip velocities.
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a b s t r a c t

The Frenkel–Kontorova (FK) model and its continuum approximation, the sine–Gordon (SG) equation,
are widely used to model a variety of important nonlinear physical systems. Many practical applications
require the wave-train solution, which includes many solitons. In such cases, an important and relevant
extension of these models applies Whitham’s averaging procedure to the SG equation. The resulting SG
modulation equations describe the behavior of important measurable system parameters that are the
average of the small-scale solutions given by the SG equation.

A fundamental problem of modern physics that is the topic of this paper is the description of the
transitional process from a static to a dynamic frictional regime. We have shown that the SG modulation
equations are a suitable apparatus for describing this transition. The model provides relations between
kinematic (rupture and slip velocities) and dynamic (shear and normal stresses) parameters of the
transition process. A particular advantage of the model is its ability to describe frictional processes over a
wide range of rupture and slip velocities covering seismic events ranging from regular earthquakes, with
rupture velocities on the order of a few km/s, to slow slip events, with rupture velocities on the order of
a few km/day.

© 2016 Elsevier B.V. All rights reserved.

1. Introduction

An understanding of tribology and its complicated nonlinear
aspects requires a combination of experimental, theoretical and
computational efforts [1,2]. While experiments and molecular
dynamics simulations provide invaluable information about the
atomic origins of static and dynamic friction, the complexities
of realistic 3D systems make it difficult to understand the gen-
eral mechanisms underlying friction. In this regard, simple low-
dimensional phenomenological models, such as the Tomlinson [3]
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and Frenkel–Kontorova (FK) [4] models are useful tools for deter-
mining the essential features of nonlinear sliding phenomena [5,
6]. These features can then be tested by experiment andmolecular
dynamics simulation. Thus, development of such models is an es-
sential part of studying friction.

The relative movement of two solids in contact is accompanied
by friction occurring due to interactions between surface asperi-
ties. Under static conditions or sliding at uniform velocity, friction
is usually described by the frictional coefficient, i.e., the propor-
tionality coefficient between tangential and normal stress (clas-
sical Amontons–Coulomb law). However, this description is not
sufficient for sliding at non-uniformvelocity.Multiple experiments
have shown that in transitional regimes, friction depends on slip,
sliding rate, contact time and normal stress history (see the ex-
tensive reviews [7–9]). Over the past 50 years, various approaches
for the modeling of non-uniform frictional processes have been
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developed. Two types of models are the most common, i.e., mass–
spring models [10–17], and rate-and-state (Dietrich–Ruina) mod-
els [18–28].

The FKmodel (one of themass–springmodels) has beenwidely
used to study micro/nanoscopic friction [29–39]. We demon-
strated that this model may also describe the dynamics of macro-
scopic non-lubricant friction [40–42]. In the model we proposed,
sliding is analogous to plasticity. It occurs due to movement of a
certain type of defect (a ‘‘macroscopic dislocation’’) nucleated on
the frictional surfaces by shear stress in the presence of asperities.
Themovement of dislocations (areas on the frictional surfaceswith
accumulated stress) requires much less external shear force than
uniform displacement of frictional surfaces. The advantages of this
model are: (1) it is an intrinsically dynamical model, rooted in the
Newtonian equations ofmotions; (2) parameters used in themodel
have explicit and unambiguous physical correlates; (3) it describes
frictional processes over a wide range of conditions, from very fast
processes such as regular earthquakes down to very slowprocesses
such as creep, silent, and slow earthquakes [40–45].

In the continuum limit the FK model is described by the
sine–Gordon (SG) equation, one of the fundamental universal
nonlinear equations of mathematical physics. Among other
applications, this equation has been used in the theory of dislo-
cations, Josephson junctions, self-induced transparency, commen-
surate–incommensurate phase transitions, charge-density waves,
magnetic domain walls, etc. (see [46–49] and references therein).
Due to its universal character, the SG equation has been extensively
investigated [46,50–52]. The mathematical apparatus which has
been developed is fully applicable to the problems considered here.
What distinguishes our approach compared to other mass–spring
frictionalmodels, in general, and FKmodels, in particular, is the use
of the SG modulation equations rather than the standard SG equa-
tion itself. Solutions to the latter provide detailed descriptions of
system parameters at small scales that are typically unmeasurable.
The advantage of our approach is that it describes the average be-
havior of parameters, such as slip and rupture velocities and shear
stress distribution, which are measurable parameters of interest.

The organization of the paper is as follows. We first describe
the basics of themodel, followed by the solution of themodulation
equations. Applications are then considered. The paper concludes
with a summary of our results.

2. Model description

2.1. Model derivation

It is commonly accepted that macroscopic friction results from
the interaction between asperities. During relative movement
of the frictional surfaces, an asperity on one frictional surface
detaches from an asperity on the opposite frictional surface and
attaches to the next opposing asperity, and this process continues
as long as the frictional surfaces are sliding relative to each other
(see illustration in Fig. 1). Neighboring asperities on the same
surface interact with each other as part of an elastic solid. We will
consider the asperities (Fig. 1(b)) on one of the frictional surfaces as
forming a linear chain of balls of massM , each ball interactingwith
the nearest neighbors on either side via spring forces of constant
Kb (Fig. 1(c)). The asperities on the opposite frictional surface will
be regarded as forming a rigid substrate which interacts with the
masses M via a periodic potential. Then we can apply the one-
dimensional FK model to describe the slip dynamics:

M
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Fig. 1. Schematic of (a) experimental arrangement, (b) asperity contact, and
(c) chain of masses interacting via elastic springs and placed in a periodic potential
(substrate). The balls represent asperities. The sine-shaped surface is the opposite
plate.

where ui is the shift of ball i relative to its equilibrium position, b is
a typical distance between asperities, t is time, Fd is the amplitude
of the periodic force on M associated with the periodic substrate
potential, fi is the frictional (dissipative) force on asperity i, and F is
the external force. This equation has been used to study plasticity
in crystalline materials, which involves the dynamics of atomic-
scale edge dislocations [46,53,54]. To express the coefficients of Eq.
(1) in terms of the volume and surface mechanical parameters of
the frictional blocks and external conditions such as normal stress,
we first consider these coefficients for the case of plasticity, i.e., at
the atomic scale. We assume a sliding surface parallel to the actual
frictional surface but inside the block. Supposing that it is a crystal
material with volume density ρ and interatomic distances a, b and
d in the directions shown on Fig. 1(a), we can find the coefficients
for Eq. (1) (see [46,53,54] for details):M = ρabd, Kb =

2µad
(1−ν)b , Fd =

µb2a
2πd , where µ is the shear modulus and ν is the Poisson ratio. Now
Eq. (1) can bewritten in the form (the second term on the left hand
side is obtained in the continuum limit approximation):
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= F − f , (2a)

where c2 = 2µ/(ρ(1 − ν)) ≡ c2l (1 − 2ν)/(1 − ν)2 and cl is
the longitudinal acoustic velocity. Note that cs < c < cl, where
cs is the shear wave velocity. An equivalent form is (supposing for
simplicity that a = b = d):
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µb2
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The dimensionless parameter A is as A = ((1 − ν)/2)1/2.
In the derivation of Eq. (2b), A2 is essentially the ratio of the
amplitude of two forces: one is the force amplitude between
an atom and the substrate layer and the other is the force
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