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h i g h l i g h t s

• Solution for an undular bore in a nematic liquid crystal derived.
• Undular bore found to be of Korteweg–de Vries type.
• Reasons for Korteweg–de Vries bore detailed.
• Excellent agreement with numerical solutions found.
• Undular bore solution related to previous experimental results.
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a b s t r a c t

The propagation of coherent light with an initial step intensity profile in a nematic liquid crystal is studied
using modulation theory. The propagation of light in a nematic liquid crystal is governed by a coupled
system consisting of a nonlinear Schrödinger equation for the light beam and an elliptic equation for
the medium response. In general, the intensity step breaks up into a dispersive shock wave, or undular
bore, and an expansion fan. In the experimental parameter regime for which the nematic response is
highly nonlocal, this nematic bore is found to differ substantially from the standard defocusing nonlinear
Schrödinger equation structure due to the effect of the nonlocality of the nematic medium. It is found
that the undular bore is of Korteweg–de Vries equation-type, consisting of bright waves, rather than of
nonlinear Schrödinger equation-type, consisting of dark waves. In addition, ahead of this Korteweg–de
Vries bore there can be a uniform wavetrain with a short front which brings the solution down to the
initial level ahead. It is found that this uniform wavetrain does not exist if the initial jump is below a
critical value. Analytical solutions for the various parts of the nematic bore are found, with emphasis on
the role of the nonlocality of the nematic medium in shaping this structure. Excellent agreement between
full numerical solutions of the governing nematicon equations and these analytical solutions is found.

© 2015 Elsevier B.V. All rights reserved.

1. Introduction

Solitary waves, or solitons for integrable equations, are thought
of as the defining solution of many nonlinear wave equations,
such as the Korteweg–de Vries (KdV) equation, the nonlinear
Schrödinger (NLS) equation and the Sine-Gordon equation [1].
However, such equations also possess a generic solution which is
just as characteristic as the soliton solution, which arises in many
applications and is just as widely observed. This solution is the un-
dular bore, or dispersive shock wave. The term undular bore arises
from their first observation as wave structures in fluids and as this
is the first name applied, it will be used in this work, rather than
the term dispersive shock wave. For nonlinear waves governed by
dispersive equations, undular bores arise when an initial jump, or
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near jump, linking two levels is smoothed by the action of disper-
sion, resulting in a smooth wavetrain linking these two levels. The
generic structure of an undular bore is that it has one edge consist-
ing of solitary waves with the opposite edge consisting of linear,
dispersive waves. An undular bore is the dispersive equivalent of a
gas dynamic shock, for which viscous effects smooth out the jump
[1], as opposed to the dispersive effects smoothing out an undular
bore. For this reason, an undular bore is also termed a dispersive
shockwave. An undular bore is a non-steadywavetrainwhich con-
tinually expands in length. It should be noted that there is another,
steady bore arising in water wave theory, a viscous bore [1,2]. This
bore is steady due to the effect of viscosity. Thisworkwill dealwith
undular bores in a nonlinear optical system, for which there is no
equivalent of fluid viscosity. Therefore, the bores dealt with in the
present work are all undular bores.

As a viscous bore is steady, it is relatively straightforward to
obtain a solution for it [3]. The unsteady nature of an undular
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bore made finding a solution for it more difficult. Whitham
[1,4–6] developed modulation theory, or the method of averaged
Lagrangians, as a method to analyse dispersive wavetrains slowly
varying in both space and time. This method is related to the
method of multiple scales in perturbation theory [7]. In particular,
Whitham derived the modulation equations for the KdV equation
[1,5]. As the periodic (cnoidal) wave solutions of the KdV equation
are stable, these modulation equations form a hyperbolic system
for the parameters of the modulated cnoidal wave. Furthermore,
these modulation equations could be set in Riemann invariant
form. It was subsequently realised that a simple wave solution of
these hyperbolic modulation equations corresponds to an undular
bore solution of the KdV equation [8,9]. A major advance occurred
when it was shown using functional analysis that the ability to
set the modulation equations for the KdV equation in Riemann
invariant form was linked to the KdV equation having an inverse
scattering solution [10], whichmeant that it was then clear how to
calculate the modulation equations for other nonlinear dispersive
wave equations having an inverse scattering solution. As few
nonlinear dispersive wave equations have an inverse scattering
solution, the utility of using Whitham modulation theory to find
undular bore solutions of nonlinear dispersivewave equationswas
greatly extended when a method was found to determine the
leading and trailing edges of an undular bore in the absence of the
full modulation equations and for equations for which there is no
inverse scattering solution to enable the modulation equations to
be found using standard techniques [11,12]. Bore solutions for a
variety of nonlinear dispersive equations have now found use in
a wide range of physical applications, for example water waves
[13–15], oceanography [16], meteorology [17–19], geophysics
[20–23] and nonlinear optics [24–28].

The present work is concerned with determining the undular
bore solution for the equations governing a specific class of non-
linear optical media, the nematic liquid crystal [29–31] in the de-
focusing regime [32] for the usual experimental parameter range.
Nematic liquid crystals are a nonlinear optical mediumwhich sup-
ports solitary waves [30,31,33], termed nematicons. They are usu-
ally a focusing medium, so that the nematicons are bright waves
and the resulting modulation equations for the nematic equations
are elliptic and so do not have an undular bore solution. However,
nematic liquid crystals can be made defocusing through the ad-
dition of azo-dyes [32]. The original applications of undular bores
were in fluid mechanics and water waves, hence their name, but
they have recently found extensive application in nonlinear optics.
Both experimental and numerical investigations have shown that
undular bores can be generated in thermal nonlinear optical me-
dia [34–37] and nonlinear crystals [38,39], among other defocusing
nonlinear opticalmedia. As these undular bores form in defocusing
media, the bores are dark bores, that is dips in a background car-
rier wave. Nematic liquid crystals are termed nonlocal media as in
the usual experimental regime the elastic response of the nematic
to an optical beam extends far beyond the beam [30,31]. While
structures with some resemblance to undular bores can form in
focusing nonlinear optical media [34,39], such as nematic liquid
crystals, and some approximate analytical theory has been devel-
oped for these [40,41], there has been no theory developed for
undular bores in defocusing nonlinear, nonlocal media, such as
nematic liquid crystals and thermal media, which is valid for ex-
perimental parameter ranges. In this context the equations gov-
erning nonlinear beams in defocusing thermal nonlinear media
[34–37] are the same as those governing nonlinear beams in de-
focusing nematic liquid crystals [30,31]. In the so-called local limit
the equations for optical beams in a nematic liquid crystal reduce
to the standard NLS equation, for which there is an known undular
bore solution [42], but, as stated, this is not the usual experimental
regime.

In the present work, the undular bore solution for the equa-
tions governing nonlinear optical beam propagation in a defocus-
ing nematic liquid crystal will be developed. It is found that the
undular bore is of KdV-type, even though the equation governing
the electric field of the light beam is of NLS-type. The bore then
consists of bright waves, rises above a background level, rather
than the dark waves, dips in a background level, of a defocusing
NLS bore [42]. The method of El [11,12] is used to show the non-
existence of an NLS-type bore in the nonlocal limit. For an initial
light intensity jump above a critical height, ahead of the KdV bore
is a uniform wavetrain with a short front which brings the solu-
tion down to the initial level ahead. This wavetrain is generated by
a phase mis-match between the KdV bore and the initial state. A
phase and group velocity argument is used to find the leading and
trailing edges of this uniform wavetrain. This argument predicts a
minimum jump height for the uniform wavetrain to exist, which
is confirmed by numerical solutions. Outside of the KdV bore and
uniform wavetrain regions, the solution is given by the non-
dispersive limit of the nematic equations. These various parts of
the analytical solution for the nematic bore are compared with full
numerical solutions of the governing equations and good to excel-
lent agreement is found, depending on the initial jump height.

Previous experimental [34] and numerical [34–37] studies of
undular bores in defocusing nonlinear, nonlocal thermal media
were for O(1) or O(10) values of the nonlocality parameter, and
so were not in the highly nonlocal regime typical of nematic liquid
crystals for which the nonlocality parameter is O(100), and were
generated by gradient catastrophes of finite initial conditions. True
undular bores cannot be generated from a finite initial condition
as true bores require the continual generation of waves as the bore
spreads. Breaking finite initial conditions give an approximation to
an undular bore for finite propagation distances as the inverse scat-
tering solution of the NLS equation, both focusing and defocusing,
shows that a finite initial condition generates a finite number of
solitons plus dispersive radiation [1]. However, some of these ex-
perimental and numerical results show evidence of the KdV-bore
type structure found in the present work [34,36], as will be dis-
cussed in more detail below.

2. Dark nematicon equations

Let us consider the propagation of polarised coherent light
through a cell filled with a nematic liquid crystal. The light is taken
to propagate in the z direction and the x direction is taken as the
direction of polarisation of the electric field of the light. The light
beam is taken to be (1 + 1) dimensional, which is a valid approxi-
mation for light in a nematic liquid crystal cell due to the widely
different aspect ratios of the cell in the directions transverse to
propagation [43]. To overcome the optical Freédericksz threshold
[29], an external low frequency electric field is applied in the polar-
isation direction to pre-tilt the nematic molecules [33]. With this
pre-tilting field, optical solitary waves in the nematic liquid crys-
tal, termed nematicons [30,31], and other nonlinear optical waves
can be formed with milliwatt power beams. If the beam power is
high, undesirable physical effects can occur, even to the extent of
the nematic phase becoming unstable [33]. Nematic liquid crys-
tals usually form a focusing medium, so that they support bright
optical solitary waves, bright nematicons [30,31]. However, a ne-
matic liquid crystal can become a defocusing medium through the
addition of azo-dyes [32], so that dark optical solitary waves, dark
nematicons, can be supported. In the paraxial, slowly varying en-
velope approximation, the non-dimensional equations governing
the propagation of the optical beam through the defocusing ne-
matic liquid crystal are [30–32,44]
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