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a b s t r a c t

Considering the nonlinear Schrödinger (NLS) equation as a representative model, we report a unified
presentation of different forms of incoherent shock waves that emerge in the long-range interaction
regime of a turbulent optical wave system. These incoherent singularities can develop either in the
temporal domain through a highly noninstantaneous nonlinear response, or in the spatial domain through
a highly nonlocal nonlinearity. In the temporal domain, genuine dispersive shock waves (DSW) develop
in the spectral dynamics of the randomwaves, despite the fact that the causality condition inherent to the
response function breaks the Hamiltonian structure of the NLS equation. Such spectral incoherent DSWs
are described in detail by a family of singular integro-differential kinetic equations, e.g. Benjamin–Ono
equation, which are derived from a nonequilibrium kinetic formulation based on the weak Langmuir
turbulence equation. In the spatial domain, the system is shown to exhibit a large scale global collective
behavior, so that it is the fluctuating field as a whole that develops a singularity, which is inherently
an incoherent object made of random waves. Despite the Hamiltonian structure of the NLS equation,
the regularization of such a collective incoherent shock does not require the formation of a DSW —
the regularization is shown to occur by means of a different process of coherence degradation at the
shock point. We show that the collective incoherent shock is responsible for an original mechanism
of spontaneous nucleation of a phase-space hole in the spectrogram dynamics. The robustness of such
a phase-space hole is interpreted in the light of incoherent dark soliton states, whose different exact
solutions are derived in the framework of the long-range Vlasov formalism.

© 2016 Elsevier B.V. All rights reserved.

1. Introduction

Shock waves have been thoroughly investigated during the last
century inmany different branches of physics [1]. The well-known
phenomenon of viscous shock wave in a dissipative compressible
fluid (gas) is characterized by a steep jump in gas velocity, density,
and temperature across which dissipation of energy due to parti-
cle collisions regularizes the shock singularity. On the other hand,
in conservative systems a different regularization occurs that en-
tails the formation, owing to dispersion, of rapidly oscillating non-
stationary structures, so-called undular bores or dispersive shock
waves (DSWs). Their theoretical study was pioneered in plasma
physics [2,3] and water waves [4], and was readily followed by
lab observations [5,6]. Seminal contributions arose afterward in
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the context of the celebrated integrable Korteweg–De Vries (KdV)
equation, both in terms of construction of non-stationary DSWs [7]
based onWhithammodulation theory [8] and a formulation of the
weak dispersion limit based on inverse scattering [9]. However, it
became soon clear that DSWphenomena constitute a universal sig-
nature of singular nonlinearwave behavior inHamiltonianmodels,
regardless of the property of integrability [10,11]. Such behavior
has generated continued interest among diverse areas of physics,
ranging from the interpretation of natural phenomena such as at-
mospheric gravity waves [12], oceanic internal waves[13], or tidal
bores [14], to lab experiments in Bose–Einstein condensates [15],
unitary Fermi gases [16], nonlinear optics (temporal [17], and spa-
tial [18] phenomena, as well as a diversity of optical settings [19]),
quantum liquids [20], nonlinear chains or granular materials [21],
viscous fluids [22], and electron beams [23]. Also notice that the
role of structural disorder of the medium on the properties of DSWs
has been investigated in the context of optical waves [24,25].

These previous studies on DSWs have been essentially reported
for coherent, i.e., deterministic, wave envelopes. When studying,
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vice versa, a system of fully random nonlinear waves (a speckle
beam in the language of optics), the usual dynamics of DSW for-
mation is challenged, yet the formation of incoherent shocks be-
comes possible through different mechanisms, as we have shown
in two recent works [26,27]. In this respect, it is important to re-
mind that an accurate statistical description of a system of ran-
domwaves has been developed in the weakly nonlinear regime by
the so-called wave turbulence theory, which has been successfully
applied to a huge variety of physical systems [28–35]. However,
such an approach is known to break down for strong nonlinearities,
when the turbulent systemcan be heavily affected by nonlinear ex-
citations, such as shockwaves, vortices, (quasi-)solitons, collapsing
wavepackets, or roguewaves [30–32,35–42]. In this general frame-
work, we recently explored how shock wave singular behaviors
can spontaneously emerge within two particular types of turbu-
lent systems which are frequently encountered in the context of
optical waves.

(i) On the one hand, we considered the temporal dynamics of a
random wave that propagates in a defocusing nonlinear medium
characterized by a temporal noninstantaneous nonlinear response
(i.e., temporal nonlocality). In this case, at variance with the deter-
ministic case where breaking occurs in time domain [17], the field
retains a random structure in time, while exhibiting a wave break-
ing process (‘‘gradient catastrophe’’) in frequency which leads to
incoherent DSWs in the Fourier spectral dynamics [26,43]. On the
basis of a weakly nonlinear wave turbulence approach, the spec-
tral dynamics of the incoherent wave can be described in the
framework of a nonequilibriumkinetic equationwhose structure is
formally analogous to that considered to studyweak Langmuir tur-
bulence (WLT) in plasmas [34,35]. Note that this formalism proved
efficient in describing different optical phenomena [35], such as
the formation of spectral incoherent solitons [44,45] through su-
percontinuumgeneration [46]. In Ref. [26]we showed that spectral
incoherent DSWs can be described in detail by a family of sin-
gular integro-differential kinetic equations (SID-KE), which were
derived from the WLT kinetic equation in the limit of a long-
range nonlinear interaction, i.e., a highly noninstantaneous re-
sponse of the nonlinearity. This approach revealed interesting links
with the 3D vorticity equation in incompressible fluids [47], or
the integrable Benjamin–Ono (BO) equation [48] originally derived
in hydrodynamics for stratified fluids and recently investigated
in the semi-classical limit to study coherent wave breaking pro-
cesses [49].

(ii) On the other hand, we considered the (transverse) spatial
dynamics of a random wave that propagates in a nonlinear
medium characterized by a highly nonlocal nonlinear response,
i.e., spatial long-range interaction. A wave turbulence approach
of the problem revealed that this regime is described in detail
by a nonequilibrium long-range Vlasov formalism [50]. Note
that this kinetic formulation differs from the traditional Vlasov
equation describing random waves in hydrodynamics [37,40,41],
in plasmas [51], or in optics, such as e.g., incoherent modulational
instabilities [35,52], or incoherent solitons [52–54], while its
structure is formally analogous to that describing systems of
particles with long-range, e.g., gravitational, interactions [55,56].
In a recent work [27], we reported both theoretically and
experimentally, a characteristic transition in the turbulent system:
By strengthening the nonlocal character of the nonlinear response,
the system evolves from a fully turbulent regime featuring a sea of
coherent small-scale dispersive shock-waves (‘shocklets’) toward
the unexpected emergence of a giant collective incoherent shock
wave. The originality of this latter phenomenon of collective shock
stems from the fact that, as a result of the underlying long-range
interaction, the system exhibits a global collective behavior, in the
sense that it is the random wave as a whole which leads to the
formation of a shock wave: The shock singularity is inherently an

incoherent object itself made of random waves. As a consequence
of this collective behavior, the regularization of the incoherent
shock does not require the formation of a DSW structure — the
regularization occurs by means of a mechanism of coherence
degradation that occurs at the shock front [27].

Considering the nonlinear Schrödinger (NLS) equation as
a representative model, we provide in this article a unified
presentation of these two different forms of incoherent shock
singularities that develop in the long range interaction regime
of the turbulent system. In Section 2 we give a brief overview
on spectral incoherent DSWs, in particular by underlying the
essential properties which distinguish them from the collective
incoherent shock waves discussed in Section 3. In this respect, we
remark that both cases challenge the usual scheme underlying the
DSW formation in Hamiltonian systems, since (i) in the temporal
case, genuine oscillatory DSW structures are formed (though
in Fourier space), in spite of the fact that the model equation
is non-Hamiltonian due to the causality constraint, whereas
(ii) the usual deterministic DSW regularization is ‘inhibited’ in
the spatial case, in spite of the Hamiltonian structure of the
spatial NLS equation. An other remarkable difference is that
the development of collective incoherent shocks requires, as
usual, a strong nonlinear interaction, whereas spectral incoherent
DSWs are generated in the weakly nonlinear turbulent regime. In
Section 3 we provide further physical insight into the nature of the
collective incoherent shock wave recently observed in Ref. [27]. At
variance with [27], we consider here the dynamics of a random
nonlinear wave characterized by a hole in its envelope profile.
Despite the underlying Hamiltonian structure of the system, such a
hole perturbation usually exhibits a damping during the evolution,
so that the system irreversibly relaxes toward an unperturbed
homogeneous state as a result of an effective Landau-damping
effect. However, in the strong nonlinear regime, we show that the
systemexhibits an incoherent shock singularity for themomentum
and a collapse singularity for the intensity envelope of the random
wave. The numerical simulations reveal that the regularization
of such a double shock-collapse singularity is responsible, after
a complex transient process, for the nucleation of a peculiar
spectrogram hole in phase-space. This phase-space hole collective
structure proves extremely robust in the system evolution, a
property which we interpret in the light of incoherent dark soliton
solutions that we derive from the long-range Vlasov equation. The
analysis reveals that such incoherent dark soliton states cannot be
clearly identified through the usual intensity analysis in real space,
while their very nature appears to be ‘hidden’ in the phase-space
representation.

2. Temporal domain: Spectral incoherent DSWs

2.1. Temporal nonlocal NLS equation

In this section we provide a brief overview on the nature of
spectral incoherent DSWs which develop in the spectral dynamics
of a random wave that evolves in a noninstantaneous nonlinear
environment. The starting point is the temporal version of the NLS
equation accounting for a delayed nonlinear response:

i∂zψ = −s∂ttψ + ψ


R(t − t ′) |ψ |

2(t ′) dt ′. (1)

As usual in optics, the propagation distance z plays the role of
an evolution ‘time’ variable, while the time (t) plays the role of
the spatial variable [57]. The response function R(t) is constrained
by the causality condition, R(t) = 0 for t < 0, and the typical
width of R(t) denotes the nonlinear response time, τR. The problem
has been normalized with respect to the ‘healing time’ τ0 =



Download English Version:

https://daneshyari.com/en/article/8256346

Download Persian Version:

https://daneshyari.com/article/8256346

Daneshyari.com

https://daneshyari.com/en/article/8256346
https://daneshyari.com/article/8256346
https://daneshyari.com

