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• We establish a blow-up criterion of the strong solution to the viscous liquid–gas two-phase flow model.
• The criterion is only in terms of the divergence of the velocity field.
• The initial vacuum is allowed.
• There is no extra restriction on viscosity coefficients.
• Both the Cauchy problem and initial–boundary value problem are considered.
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a b s t r a c t

In this paper, we establish a blow-up criterion to the local strong solution to the three dimensional (3D)
viscous liquid–gas two-phase flow model only in terms of the divergence of the velocity field. Moreover,
the initial vacuum is allowed, and there is no extra restriction on viscous coefficients. Both the Cauchy
problem and initial-boundary value problem are considered in this paper.

© 2015 Elsevier B.V. All rights reserved.

1. Introduction

In this paper, we concern the 3D viscous liquid–gas two-phase
flow model

mt + div(mu) = 0, in Ω × (0, T ),
nt + div(nu) = 0, in Ω × (0, T ),
(mu)t + div(mu ⊗ u) + ∇P

= µ∆u + (λ + µ)∇divu, in Ω × (0, T ),

(1)

with the initial conditions
(m, n, u)|t=0 = (m0, n0, u0) in Ω, (2)
and two types of boundary conditions:

(1) Dirichlet boundary condition:
u = 0 on ∂Ω, (3)
for Ω ⊂ R3 being a bounded smooth domain;
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(2) Cauchy problem:

u(x, t) → 0, (m, n)(x, t) → (0, 0), as |x| → ∞, (4)

for Ω = R3.
The unknown variables m = αlρl, n = αgρg , u = (u1, u2, u3)

and P = P(m, n) denote the liquid mass, gas mass, the velocity of
the fluid, and the common pressure for both phases, respectively.
αl and αg ∈ [0, 1] denote the liquid and gas volume fractions,
respectively, with the relation

αl + αg = 1. (5)

ρl and ρg denote the liquid and gas densities, respectively. µ and λ
are viscosity constants, with the physical conditions

µ > 0, 2µ + 3λ ≥ 0. (6)

Moreover, the pressure satisfies the equations of state

P = Pl,0 + a2l (ρl − ρl,0) and P = ρga2g , (7)

where al and ag are sonic speeds in the liquid and gas, respectively;
Pl,0 and ρl,0 are the reference pressure and density given as
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constants. In view of the relationship (5) and (7), the pressure
satisfies

P2
+


a2l ρl,0 − Pl,0 − na2g − ma2l


P −


a2ga

2
l ρl,0 − a2gPl,0


n = 0,

which implies

P(m, n) =
1
2
a2l


−b(m, n) +


b(m, n)2 + c(m, n)


, (8)

here

b(m, n) = k0 − m −


ag
al

2

n, c(m, n) = 4k0


ag
al

2

n,

and

k0 = ρl,0 −
Pl,0
a2l

> 0.

In this paper, we study a simplified model (1) of Drift-flux type,
in which we suppose that the two fluids have the common pres-
sure and the same velocity, while the external force and the effect
of gas in the convective term can be ignored in the mixture mo-
mentum equation. At the beginning, we recall the original form of
the model (1), as follows,

(αlρl)t + div(αlρlul) = 0,
(αgρg)t + div(αgρgug) = 0,
(αlρlul)t + div(αlρlul ⊗ ul) + αl∇P(αlρl, αgρg)

+ ∆P(αlρl, αgρg)∇αl

= Ql + Ml + div(µαl(∇ul + ∇uT
l )) + ∇(λαldivul),

(αgρgug)t + div(αgρgug ⊗ ug) + αg∇P(αlρl, αgρg)
+ ∆P(αlρl, αgρg)∇αg

= Qg + Mg + div(µαg(∇ug + ∇uT
g )) + ∇(λαgdivug),

(9)

where ∆P is the correction term, Mg and Ml represent interface
modeling interactions between the phases, and satisfy

Mg + Ml = 0.

Qg and Ql represent external forces (friction and gravity) on gas
flows and liquid flows, respectively. Summing the momentum
equations in (9) yields directly

(αlρlul + αgρgug)t + div(αlρlul ⊗ ul

+ αgρgug ⊗ ug) + ∇P(αlρl, αgρg)

= Ql + Qg + µ∆(αlul + αgug) + (µ + λ)∇div(αlul + αgug).

Furthermore, neglecting the external forces and assuming the
gas and liquid flows possess the consistent velocity, we obtain the
simplified model (1).

In the following, we would like to recall some known results
about the viscous liquid–gas two-phase flow model. In one di-
mensional case, when the fluids connected to vacuum state dis-
continuously, Evje and Karlsen [1] first studied the existence and
uniqueness of the global weak solution to the free boundary value
problem with the viscous coefficient µ(m) = k1 mβ

(ρl−m)β+1 , β ∈
0, 1

3


. Moreover, the asymptotic behavior and the regularity of the

solution has been considered in [2,3]. For more properties on the
1D model (1) or related model, we can refer [4–9] to the readers.
For the multi-dimensional case, many problems such as the regu-
larity of the solution are still totally open. Guo and etc. showed the
existence of the global weak solution with initial vacuum in [10]
for sufficiently small initial energy. Later on, Wen and etc. [11] es-
tablished the existence and uniqueness of the local strong solution
to the 3D system (1) with initial vacuum, moreover, they gave a
blow-up criterion in terms of the estimate of ∥m∥L∞(0,T ;L∞) for the
strong solutionwith vacuum,with the additional restriction on the
viscosity coefficients
25µ
3

> λ.

Moreover, Hou and Wen [12] obtained a blow up criterion with
the estimate of L1t L

∞
x norm of the deformation tensor of the veloc-

ity gradient D(t) =
1
2 (∇u + ∇uT ) with vacuum. Yao etc. in [13]

established a blow-up criterion only in terms of the gradient of ve-
locity field for the strong solution to 3D case in bounded domain,
provided that the initial vacuum is absent. Namely, suppose that
T ∗ < ∞ is maximal existence time to the strong solution, then

lim
T→T∗

∥∇u∥L1(0,T ;L∞) = ∞. (10)

Themethodsmentioned in the above works are borrowed from
the ideas in a series works [14–18] on compressible Navier–Stokes
equations. Next, wewill introduce some similar results on blow-up
criteria to the compressible Navier–Stokes equations. For the 3D
compressible Navier–Stokes equations, Sun, Wang and Zhang [18]
established a blow-up criterion about the upper bound of density
for strong solution, with the initial vacuum in both bounded
smooth domain and R3, provided the viscosity coefficients satisfy
the additional restriction λ < 7µ. Huang and Xin [17] obtained a
following blow-up criterion under the above viscosity coefficients
restriction, i.e., if T ∗ < ∞ is the maximal time of the existence of
the classical solution, that

lim
T→T∗

 T

0
∥∇u∥L∞dt = ∞,

when there is initial vacuum. Later, Huang and etc. in [16] removed
the restriction λ < 7µ and gave the blow-up criterion as

lim
T→T∗

 T

0
∥Du(t)∥L∞dt = ∞,

where D(t) =
1
2 (∇u + ∇uT ).

Recently, for the 3D compressible Navier–Stokes equations, Du
and Wang [19] improved the results and showed that

lim
T→T∗

 T

0
∥divu(t)∥2

L∞dt = ∞,

which implies that the divergence of the velocity field plays the
dominant role in the blowup mechanism instead of the gradient
tensor or its symmetry part of the velocity field.

Therefore, motivated by these works, for the 3D viscous
liquid–gas two-phase flow model (1), we expect to establish a
similar blow-up criterion only in terms of divergence of velocity
field as in [19], instead of (10), which is the main purpose in this
paper. We also give the rigorous proof of this assertion for the
initial–boundary value problem (1)–(3) and the Cauchy problem
(1), (2), (4).

Throughout this paper, we denote the simple notation as
fdx =


Ω

fdx.

For 1 ≤ p ≤ ∞ and integer k ≥ 0, we denote the standard
Lebesgue and Sobolev spaces as follows,
Lp = Lp(Ω), Dk,p

= {u ∈ L1loc(Ω) : ∥∇
ku∥Lp < ∞},

W k,p
= Lp ∩ Dk,p, Dk

= Dk,2, Hk
= W k,2,

D1
0 = {u ∈ L6 : ∥∇u∥L2 < ∞, and (3) or (4) holds},

H1
0 = L2 ∩ D1

0, ∥u∥Dk,p = ∥∇u∥Lp , QT = Ω̄ × [0, T ].

In the following, we give the definition of the strong solution
and the local existence of the unique strong solution for the viscous
liquid–gas two-phase flow model (1) with vacuum for smooth
bounded domain, which has been established in [11]. It can be
extended to Cauchy problemwithout any additional difficulty, and
we omit it here.
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