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h i g h l i g h t s

• Modulational instability is studied numerically in the mKdV equation framework.
• The D-cascade formation in the Fourier space is highlighted.
• Cascade shape is studied for various values of wave parameters.
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a b s t r a c t

In this study we examine the energy transfer mechanism during the nonlinear stage of the Modulational
Instability (MI) in the modified Korteweg–de Vries (mKdV) equation. The particularity of this study
consists in considering the problem essentially in the Fourier space. A dynamical energy cascade model
of this process originally proposed for the focusing NLS-type equations is transposed to the mKdV setting
using the existing connections between the KdV-type and NLS-type equations. The main predictions of
the D-cascade model are outlined and validated by direct numerical simulations of the mKdV equation
using the pseudo-spectral methods. The nonlinear stages of the MI evolution are also investigated for the
mKdV equation.

© 2015 Elsevier B.V. All rights reserved.

1. Introduction

Nonlinearwave systems occur in numerous physical areas from
optics to fluid mechanics, from astronomy to geophysics, and one
of the most important issues regarding these systems is a descrip-
tion of its energy behavior. One of the most beautiful examples to
illustrate this point, is the hypothesis of Kolmogorov on the form
of energy spectrum in systemswith strong turbulence inwhich the
energy spectrum is supposed to have the universal form E(ℓ) ∼

ℓ−5/3 where ℓ is the size of the eddy, [1]. In the kinetic weak (or
wave) turbulence theory (WTT) dispersivewaves play now the role
of eddies, and the energy spectrum is again power law k−α where
k is the wave length (if dispersion function ω ∼ kβ ) and α is not
universal any more, [2].
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The kinetic WTT is an asymptotic theory which is working for
very small nonlinearity 0 < ε / 0.01, where small parameter ε is
usually taken as a product of wave amplitude with wave number,
ε = Ak. The smallness of ε is very important while the kinetic
WTT is essentially based on the following assumption: time scales
for 3-, 4-, . . . , s-wave resonances are separated and can be studied
independently. This assumption breaks at about ε ≈ 0.1, e.g. [3].
On the other hand, usual laboratory experiments and numerical
simulations are performed for ε ≈ 0.1–0.4 while for a smaller
ε ∼ 0.01 corresponding time scales are too long and kinetic energy
cascades cannot be observed in an experiment at the present stage
of technical facilities, [4,5].

A new model (hereafter referred to as D-model) for the forma-
tion of the energy spectrum has been developed by E. Kartashova
(2012) in [6]; the model can be applied for describing nonlinear
wave systems with nonlinearity parameter of the order of ε ∼

0.1–0.4 andwave systemswith narrow frequency band excitation.
Basic physical mechanism responsible for the formation of the en-
ergy spectrum in thismodel is not a common s-wave resonance but
the modulation instability, and the main assumption of the model
is that energy cascade is formed by themost unstablemodes in the
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system, i.e. modes with maximum increment of instability. In [6],
the Increment Chain Equation Method (ICEM) was developed for
computing dynamical energy spectrum in the systems possessing
modulation instability, and applied for the focusing NLS andmNLS,
with different levels on nonlinearity, [7,8].

The NLS is a very attractive equation because of its integrability,
but unfortunately it gives sometimes not good enough description
of the observed physical effects. For instance, modulation instabil-
ity was discovered in laboratory experiments with water waves
and explained by Benjamin& Feir (1967) [9], as instability of a nar-
rowwave packet in the framework of the NLS. However, numerical
simulations with NLS demonstrate a symmetric energy cascade in
the Fourier space while energy cascade experimentally observed
in a water tank, is asymmetric. To cope with this problem, it is
necessary to introduce various modifications to NLS, e.g. [10,11].
These modifications allow for the realistic values of small param-
eter, 0 < εreal ∼ 0.1–0.4, and are more suitable for modeling real
physical phenomena.

The Korteweg–de Vries (KdV) equation along with its various
modifications is another widely used model equation describing
longwaves, i.e. the region of smallwave vectors kd ≪ 1, dbeing the
mean water depth. This equation does not have the restrictive as-
sumption of narrow spectrum as theNLS equation. However,many
modifications of KdV are integrable which is a strong mathemati-
cal property. So it is not surprising that the KdV equation has found
many applications in different fields of Physics such as the shallow
water wave dynamics [12,13], internal waves in two-component
fluids [14] and acoustic waves in plasmas [15]. Our motivation to
study the KdV-family of equations comes mainly from the numer-
ous real-world applications that it can cover.

Though KdV does not have modulation instability [16], its var-
ious modifications do possess this property, under certain condi-
tions. Thus, perturbations of a quasi-periodical wave train with
small amplitudes in the generalized KdV equations with nonlin-
earity of the form (up+1)x

gKdV(u±)
.
= ut + uxxx + (up+1)x = 0, (1.1)

are modulationally stable if p < 2, while they are modulationally
unstable if p > 2, [17]. A more general version of this result al-
lowing for nonlocal dispersion can be found in [18]. However, all
these results do not allow to obtain a nice analytical representa-
tion for the instability interval as in [9], and a numerical study is
unavoidable.

Another reference point important for our study of mKdV is the
following remarkable feature of this equation: it can be reduced,
under certain conditions, to themNLSwhere theMI can be studied
by analytically. This reduction can be made by the variational
methods [19] or by standard asymptotical approach as in [14].

Our aim in this paper is to study a particular casewith p = 2 and
one space dimension—the so-called modified Korteweg–de Vries
(mKdV) equation

mKdV(u±)
.
= ut + uxxx ± 6u2ux = 0, (1.2)

with u being a real-valued scalar function, x and t are space and
time variables consequently, and the subscripts denote the corre-
sponding partial derivatives. As a starting point for our simulations
aiming to study the MI in the mKdV, i.e. p = 2 in (1.1), we use the
estimates obtained in [17] by combination of analytical results and
numerical estimates, namely that for p = 2, the wave is spectrally
stable for all wave vectors 0 < k2 < 2.

It is also shown in [14] that wave packets are unstable only for a
positive sign of the coefficient of the cubic nonlinear term in (1.2),
and for a high carrier frequency. Being interested in modulation
instability, we restrict the study further on the case of focusing
mKdV equation:

mKdV(u+)
.
= ut + uxxx + 6u2ux = 0. (1.3)

In the present paper we aim to study in detail formation and prop-
erties of the direct D-cascade in the frame of KdV equation (1.3).

The present manuscript is organized as follows. In Section 2 we
give a sketch of aD-cascade formation for this equation and formu-
late the properties of the cascade and its spectra which should be
verified numerically. In Section 3 we describe shortly our numeri-
cal approach and present results of our numerical simulations. Fi-
nally, the main conclusions of this study are briefly formulated in
Section 4.

2. D-cascade in the model equation

Themain effect of theModulational Instability (MI) is the disin-
tegration of periodic wavetrains into side bands. Benjamin & Feir
(1967) [9] showed that there is a connection between the frequen-
cies, wavenumber and amplitudes of unstablemodes in the frame-
work of the focusing (+) Nonlinear Schrödinger (NLS) equation,
which reads after a proper re-scaling:

NLS(v±)
.
= ivt + vxx ± |v|

2v = 0.

Namely, they computed the instability interval in the form

0 < ∆ω


Akω ≤

√
2, (2.1)

where ω(k) is the linear dispersion relation, k is the wavenumber
and A is the amplitude of the Fourier mode ω. Quantity ∆ω is the
distance between the parent mode and its side band. It was also
shown in [9] that the most unstable mode satisfies the following
relation:

∆ω


Akω = 1. (2.2)

The use of two assumptions – (a) an energy cascade is formed by
the most unstable modes, and (b) the energy fraction p (called cas-
cade intensity) transported from one cascading mode to the next
one is constant – allows to construct and to solve an approximate
ordinary differential equation for computing amplitudes of cascad-
ing modes, [6]. The first constitutive assumption was inspired by
the well-known hypothesis of O. Phillips while the second by nu-
merous experimental studies of water waves, e.g. [20].

The amplitude of the n-s mode in the cascade can be computed
as

A(ω±n) = ±(
√
p − 1)

 ω+n

ω0

dωn

ωnkn
+ C±(ω0, A0, p). (2.3)

Accordingly, by definition the energy En(ωn) ∝ A2(ωn), which pro-
vides us with the discrete set of energies of individual harmonics.
The spectral density E (Dir)(ω) can be now computed:

E (Dir)(ω)
.
= lim

∆ωn→0

E(ωn+1) − E(ωn)

∆ωn
.

A similar formula can be written for the inverse cascade as well.
However, the limits of integration in (2.3) will be inverted corre-
spondingly to

 ω0
ω−n

.
Besides the form of energy spectra, the D-cascademodel allows

to make other predictions for the Nonlinear Schrödinger (NLS)-
family of the PDEs e.g. , the time scale for the D-cascade occurring
is tMI ∝ t/ε2; the distance between two cascading frequencies
depends on the steepness of the initial wave train; the cascade can
be determined, depending on the choice of excitation parameters
ω0, k0, A0; the D-cascade termination can be caused by a few
main reasons: stabilization, wave breaking and intermittency. All
scenarios were observed experimentally, e.g. in [21,22].

Connection between the Nonlinear Schrödinger (NLS) and the
mKdV can be established in the following way. As it was shown by



Download	English	Version:

https://daneshyari.com/en/article/8256376

Download	Persian	Version:

https://daneshyari.com/article/8256376

Daneshyari.com

https://daneshyari.com/en/article/8256376
https://daneshyari.com/article/8256376
https://daneshyari.com/

