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h i g h l i g h t s

• We develop a phase reduction theory for oscillatory convection with a spatial mode.
• The theory can be considered as a phase description method for limit-torus solutions.
• We derive phase sensitivity functions for spatial and temporal phases of convection.
• We can quantify spatiotemporal phase responses of convection to weak perturbations.
• We can analyze spatiotemporal phase synchronization between weakly coupled systems.
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a b s t r a c t

We formulate a theory for the phase description of oscillatory convection in a cylindrical Hele–Shaw cell
that is laterally periodic. This system possesses spatial translational symmetry in the lateral direction
owing to the cylindrical shape as well as temporal translational symmetry. Oscillatory convection in
this system is described by a limit-torus solution that possesses two phase modes; one is a spatial
phase and the other is a temporal phase. The spatial and temporal phases indicate the ‘‘position’’ and
‘‘oscillation’’ of the convection, respectively. The theory developed in this paper can be considered as
a phase reduction method for limit-torus solutions in infinite-dimensional dynamical systems, namely,
limit-torus solutions to partial differential equations representing oscillatory convection with a spatially
translational mode. We derive the phase sensitivity functions for spatial and temporal phases; these
functions quantify the phase responses of the oscillatory convection toweak perturbations applied at each
spatial point. Using the phase sensitivity functions, we characterize the spatiotemporal phase responses
of oscillatory convection to weak spatial stimuli and analyze the spatiotemporal phase synchronization
between weakly coupled systems of oscillatory convection.

© 2014 The Authors. Published by Elsevier B.V.
This is an open access article under the CC BY license

(http://creativecommons.org/licenses/by/4.0/).

1. Introduction

Nature provides abundant examples of rhythmic systems and
synchronization phenomena [1–5]. Each rhythmic system is typi-
cally described by an ordinary differential equation that possesses
a limit-cycle solution. The phase reduction method for ordinary
limit-cycle oscillators has been well established and successfully
applied to analyze the synchronization properties of the oscilla-
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tors [1–3,6–10]. There also exist rhythmic spatiotemporal patterns
described by limit-cycle solutions to partial differential equations
[11–18].

We recently developed a phase description method for limit-
cycle solutions to the following partial differential equations: the
nonlinear Fokker–Planck equations that represent the collective
dynamics of globally coupled noisy dynamical elements [19], the
fluid equations that represent the dynamics of the temperature
field in ordinary Hele–Shaw cells [20], and the reaction–diffusion
equations that represent rhythmic spatiotemporal patterns in
chemical and biological systems [21]. However, there are also
examples of spatiotemporal rhythms in systems that further
possess spatial translational symmetry; these spatiotemporal
rhythms cannot be described by limit-cycle solutions.
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For example, rotating annuli and spheres possess continuously
rotational symmetry, i.e., continuously translational symmetry in
the rotating direction [17,18,22,23]. Consequently, the emergence
of spatiotemporal rhythms in such systems brings up two
phase modes, i.e., a spatial phase and a temporal phase. Such
spatiotemporal rhythms are described by limit-torus solutions.
Synchronization of spatiotemporal rhythmswith twophasemodes
has been experimentally investigated using systems of rotating
fluid annuli that exhibit traveling and oscillating convection
(i.e., amplitude vacillation [18]),which is analogous to atmospheric
circulation [24,25]. Therefore, a phase description method for
limit-torus solutions to partial differential equations is desirable.

In this paper, as the first step, we consider oscillatory convec-
tion in a cylindrical Hele–Shaw cell that is laterally periodic. An
ordinary Hele–Shaw cell is a rectangular cavity where the gap
between two vertical walls is much smaller than the extent of
the other two spatial dimensions, and the fluid in the cavity ex-
hibits oscillatory convection under the appropriate parameter con-
ditions (see Refs. [26,27] and references therein). The cylindrical
Hele–Shaw cell is a cylindrical version of the ordinary Hele–Shaw
cell that possesses spatial translational symmetry in the lateral di-
rection owing to the cylindrical shape. Oscillatory convection in the
cylindrical Hele–Shaw cell is therefore described by a limit-torus
solution that possesses both spatial and temporal phases.

Here, we formulate a theory for the phase description of
oscillatory convection in the cylindrical Hele–Shaw cell. The theory
can be considered as a phase reduction method for limit-torus
solutions to partial differential equations. The theory can also be
considered as a generalization of our phase descriptionmethod for
limit-cycle solutions to partial differential equations such as the
nonlinear Fokker–Planck equations [19], fluid equations [20], and
reaction–diffusion equations [21]. The phase reductionmethod for
limit-torus solutions enables us to describe the dynamics of the
oscillatory convection by two phases (i.e., spatial and temporal
phases), and facilitates theoretical analysis of the spatiotemporal
phase synchronization properties of the oscillatory convection. On
the basis of phase reduction, we characterize the spatiotemporal
phase responses of oscillatory convection to weak impulses
and analyze the spatiotemporal phase synchronization between
weakly coupled systems exhibiting oscillatory convection.

This paper is organized as follows. In Section 2, we formulate
a theory for the phase description of oscillatory convection with
a spatially translational mode; supplemental information of the
theory is given in Appendices A and B. In Section 3, we illustrate
the theory using a numerical analysis of the oscillatory convection.
In Section 4, wemake a comparison between the theory and direct
numerical simulations. Concluding remarks are given in Section 5.

2. Phase description of oscillatory convection

In this section, we formulate a theory for the phase description
of oscillatory convection in a cylindrical Hele–Shaw cell that is
laterally periodic. The theory can be considered as an extension
of our phase description method for oscillatory convection in the
ordinary Hele–Shaw cell [20] to that in the cylindrical Hele–Shaw
cell.

2.1. Dimensionless form of the governing equations

The dynamics of the temperature field T (x, y, t) in the cylin-
drical Hele–Shaw cell is described by the following dimensionless
form (see Ref. [26] and references therein):

∂

∂t
T (x, y, t) = ∇

2T + J(ψ, T ). (1)

The Laplacian and Jacobian are respectively given by

∇
2T =


∂2

∂x2
+
∂2

∂y2


T , (2)

J(ψ, T ) =
∂ψ

∂x
∂T
∂y

−
∂ψ

∂y
∂T
∂x
, (3)

where we assumed that the curvature effects due to the cylindrical
shape are negligible (see Refs. [28,29] for curvature effects,
although the subject of these references is not thermal convection
but viscous fingering). The first and second terms on the right-
hand side of Eq. (1) represent diffusion and advection, respectively.
The stream functionψ(x, y, t) is determined from the temperature
field T (x, y, t) as follows:

∇
2ψ(x, y, t) = −Ra

∂T
∂x
, (4)

where the Rayleigh number is denoted by Ra. The stream function
ψ(x, y, t) also gives the fluid velocity field v(x, y, t), i.e.,

v(x, y, t) =


∂ψ

∂y
, −

∂ψ

∂x


. (5)

Fig. 1 shows a schematic diagram of the cylindrical Hele–Shaw cell.
The system is defined in the following rectangular region: x ∈

[0, 2] and y ∈ [0, 1]. Because this Hele–Shaw cell has a cylindrical
shape, the system possesses a 2-periodicity with respect to x. The
boundary conditions for the temperature field T (x, y, t) are given
by

T (x + 2, y, t) = T (x, y, t), (6)

T (x, y, t)

y=0

= 1, T (x, y, t)

y=1

= 0, (7)

where the temperature at the bottom (y = 0) is higher than that
at the top (y = 1). The stream function ψ(x, y, t) satisfies the
periodic boundary condition on x and the Dirichlet zero boundary
condition on y, i.e.,

ψ(x + 2, y, t) = ψ(x, y, t), (8)

ψ(x, y, t)

y=0

= ψ(x, y, t)

y=1

= 0. (9)

Owing to the homogeneity of Eqs. (1) (4) and the periodic
boundary condition on x, given in Eqs. (6) (8), this systempossesses
continuous spatial translational symmetry with respect to x. We
also note that no conserved quantity exists in this system.

There also exists spatial reflection symmetry in this system,
i.e., Eqs. (1) and (4) are invariant under the simultaneous transfor-
mation of (x, y) → (−x, y) and (ψ, T ) → (−ψ, T ); however, the
theory formulated below does not require this reflection symme-
try.

2.2. Convective components of the temperature field

To simplify the boundary conditions in Eq. (7), we consider the
convective component X(x, y, t) of the temperature field T (x, y, t)
as follows:

T (x, y, t) = (1 − y)+ X(x, y, t). (10)

Substituting Eq. (10) into Eqs. (1) and (4), we derive the following
equations:

∂

∂t
X(x, y, t) = ∇

2X + J(ψ, X)−
∂ψ

∂x
, (11)

and

∇
2ψ(x, y, t) = −Ra

∂X
∂x
. (12)
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