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h i g h l i g h t s

• Gap probabilities for the single and multi-time Bessel process are considered.
• Fredholm determinants of such processes are related to Riemann–Hilbert problems.
• In the single-time case the Fredholm determinant is related to Painlevé 3 equation.

a r t i c l e i n f o

Article history:
Received 7 September 2013
Received in revised form
10 December 2014
Accepted 23 December 2014
Available online 1 January 2015
Communicated by P.D. Miller

Keywords:
Determinantal point processes
Riemann–Hilbert problem
Integrable kernel

a b s t r a c t

We consider the gap probability for the Bessel process in the single-time and multi-time case. We prove
that the scalar and matrix Fredholm determinants of such process can be expressed in terms of deter-
minants of integrable kernels in the sense of Its–Izergin–Korepin–Slavnov and thus related to suitable
Riemann–Hilbert problems. In the single-time case, we construct a Lax pair formalism and we derive a
Painlevé III equation related to the Fredholm determinant.

© 2015 Elsevier B.V. All rights reserved.

1. Introduction

Many models in Mathematical Physics rely on the notion of a determinantal random point process (DPP). A few examples are offered
by the statistical distribution of the eigenvalues of random matrix models pioneered by Dyson [1], certain models of random growth of
crystals [2–4], and mutually avoiding random walkers (usually referred as Dyson’s processes).

The present paper falls into the last category and establishes a connection between certain ‘‘gap’’ probabilities and a particular class of
boundary value problems in the complex plane, generally referred to as ‘‘Riemann–Hilbert problems’’ (see e.g. [5]). Wewill show that such
boundary value problem, suitably formulated, allows to express the ‘‘gap’’ probabilities in terms of theory of equation of Painlevé type;
this relationship is quite well-known originally in two dimensional statistical physics [6] and it was extensively studied in the eighties
and nineties [7–12].

In order to frame our results in a narrower context, we mention the well-known ‘‘Tracy–Widom’’ distribution [11] which describes the
fluctuations of the largest eigenvalue of a randomGaussianmatrix (suitably scaled) in terms of the solution of a nonlinear ODE (Painlevé II).
Similarly in [12] the authors connected the fluctuation of the smallest eigenvalue of the ‘‘Laguerre ensemble’’ to the third member of the
Painlevé hierarchy. Our results are closely related to these and will extend this connection to the case of the ‘‘Bessel process’’ using a
completely different method.

We also mention the recent paper [13] where a new Lax pair related to the Painlevé III equation is defined and the first component of
their eigenvector is the smallest eigenvalue probability near the hard edge in the large n limit of the Laguerre ensemble.

Before getting into the details pertinent to the Bessel process we will briefly review for the sake of the reader the main concepts about
DPP in timeless and dynamic regimes and explain the connection with our case. For surveys on DPP, we refer to Soshnikov [14] and
Johansson [15].
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Determinantal point process. Consider a random collection of points on the real line. A configuration X is a subset of R that locally
contains a finite number of points, i.e. #(X ∩ [a, b]) < +∞ for every bounded interval [a, b] ⊂ R. Then, a (locally finite) point process
on R is a probability measure on the space of all configurations, so that, loosely speaking, it is possible to evaluate the probability of any
given configuration.

Given a point process on R, the mapping A → E[#(X ∩ A)], which assigns to a Borel set A the expected value of the number of points
in A, is a measure on R. We assume there exists a density ρ1 with respect to Lebesgue measure and we call it 1-point correlation function
for the point process. Then, we have

E[#(X ∩ A)] =


A
ρ1(x)dx (1.1)

and ρ1(x)dx represents the probability to have a point in the infinitesimal interval [x, x + dx]. In general, given disjoints sets A1, . . . , Ak,
we have

E


k

j=1

#(X ∩ Aj)


=


A1

. . .


Ak

ρk(x1, . . . , xk)dx1 . . . dxk (1.2)

i.e. the expected number of k-tuples (x1, . . . , xk) ∈ Xk such that xj ∈ Aj for every j. In case the Aj’s are not disjoint it is still possible to
define the quantity above, with little modifications.

A point process with correlation functions {ρk}k≥1 is a DPP if there exists a kernel K(x, y) such that for every k and every x1, . . . , xk we
have

ρk(x1, . . . , xk) = det[K(xi, xj)]ki,j=1. (1.3)

In aDPP all quantities of interest can be expressed in terms ofK . In particular, given a Borel setA, we are interested in the gap probability,
i.e. the probability to find no points in A. It is possible to show that such quantity is equal to the Fredholm determinant

det(Id − χAKχA) (1.4)

of the (trace class) integral operator K defined by

K [f ] (x) =


R
K(x, y)f (y)dy (1.5)

and restricted to the Borel set A (χA is the projection on such subset).
An example of a DPP is the set of eigenvalues of a randommatrix ensemble as in the case of the aforementioned Gaussian and Laguerre

ensembles. The theory of gap probabilities for DPP has been extensively studied (see [16–19] to mention a few).

Remark 1.1. The same arguments are valid when performing a scaling limit of the process, as the number of points goes to∞, at different
sectors in the domain of the points (see for example [14]). As we will see, this is the case of the Bessel process, which appears as limiting
kernel of certain matrix ensembles as the dimension of the matrix goes to infinity.

A generalization of such theory is given by introducing multiple times 0 < τ1 < · · · < τn at which one can simultaneously study the
behaviour of the points. We call a time-dependent process ‘‘multi-time process’’.

The idea behind the introduction of multi-time processes is to be able to consider not only static models in timeless equilibrium, but
also dynamical systems which may be in an arbitrary non-equilibrium state changing with time.

The first implementation of this dynamic regime was proposed by Dyson [1] for the study of the random eigenvalues of a Gaussian
ensemble.

Given a collection of times {τk}k=1,...,n, within a fixed time interval, say (0, T ), and subsets Ak ⊂ R, k = 1, . . . , n, the quantity of interest
is the probability that for all k no points lie in Ak at time τk. We call again this quantity ‘‘gap probability’’.

Applying classical results from Karlin and McGregor [20] and Eynard and Mehta [21], it can be proved that the gap probability is equal
to the Fredholm determinant of a suitable integral operator [K ], with matrix kernel [Kij]

n
i,j=1, restricted to the sets A⃗ = A1 ⊔ · · · ⊔ An:

P (no points in Ak at time τk, ∀k) = det(Id − χA⃗ [K ]χA⃗). (1.6)

The Bessel process. We introduce now the subject of the present paper. The Bessel process is a determinantal point process as detailed
above [14] defined in terms of a trace-class integral operator acting on L2(R+), with kernel

KB(x, y) =
Jν(

√
x)

√
yJν+1(

√
y) − Jν+1(

√
x)

√
xJν(

√
y)

2(x − y)
(1.7)

where Jν are Bessel functions with parameter ν > −1.
The Bessel kernel KB arose originally as the correlation function in the scaling limit of the Laguerre and Jacobi Unitary Ensembles near

the hard edge of their spectrum at zero [22–24] as well as of generalized LUEs and JUEs [25,26].
In this article we focus on the gap probabilities of this process. In particular, we will be concerned with the Fredholm determinant of

such operator on a collection of (finite) intervals I :=
N

i=1[a2i−1, a2i], i.e. the Tracy–Widom distribution det (Id − KBχI), and the emphasis
is on the determinant thought of as a function of the endpoint ai, i = 1, . . . , 2N .
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