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We investigate the existence and stability of discrete breathers in a chain of masses connected by linear
springs and subjected to vibro-impact on-site potentials. The latter are comprised of harmonic springs and
rigid constraints limiting the possible motion of the masses. Local dissipation is introduced through a non-
unit restitution coefficient characterizing the impacts. The system is excited by uniform time-periodic
forcing. The present work is aimed to study the existence and stability of similar breathers in the space of
parameters, if additional harmonic potentials are introduced. Existence-stability patterns of the breathers
in the parameter space and possible bifurcation scenarios are investigated analytically and numerically.
In particular, it is shown that the addition of a harmonic on-site potential can substantially extend the
stability domain, at least close to the anti-continuum limit. This result can be treated as an increase in the
robustness of the breather from the perspective of possible practical applications.
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1. Introduction

Discrete breathers (DBs) have long been a subject of both the-
oretical analysis and experimental studies [ 1-3]. In [4], DBs of the
sine-Gordon type are analyzed for various coupling strength val-
ues, including the no-coupling limit, showing noteworthy features
in terms of existence, stability, bifurcation types, mobility and in-
teraction, and exhibiting properties similar to some of those ex-
hibited by Hamiltonian systems. In [5], magnetic meta-material
breathers are analyzed with special emphasis on the weak coupling
limit and with stability and mobility investigated for both energy-
conserving and dissipative systems. In [6], a model with quar-
tic nonlinearity is analyzed from the perspective of spontaneous
creation and annihilation of DBs due to thermal fluctuations, ex-
hibiting the features of stochastic resonance, such as, for example,
non-monotonic dependence on noise. A seminal experimental
work [7] investigated stability exchange between different local-
ized modes in forced-damped coupled pendula and their possible
relation to dislocation dynamics.

In the majority of theoretical studies related to DBs, the con-
sidered models are Hamiltonian. Still, in many applications the
damping cannot be neglected, and in order to maintain the DB, one
should compensate it by some kind of direct or parametric exter-
nal forcing [3]. Many of the DBs observed in experiments exist in
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damped systems and should be maintained by some external forc-
ing.
Lack of Hamiltonian structure radically changes the properties
of the DBs. To name just one point, instead of a continuous fam-
ily of localized solutions, one expects to obtain a discrete set of
attractors. Accordingly, many of the methods devised for computa-
tion and analysis of Hamiltonian DBs are not applicable in forced-
damped systems. Recently, it was demonstrated that one can
derive exact solutions for DBs in vibro-impact chain models. Such
lattices have been investigated analytically both for the Hamilto-
nian case [8] and for the forced-damped case [9].

In both cases, representation of the nonlinearity, responsible
for the localization effect, with the help of the impact conditions,
turned out to be advantageous, both for the derivation of an ana-
lytic solution and for the stability analysis. To simplify the numeric
simulations, in [10], a method is suggested for modeling impact
conditions by smooth potentials for both symmetric and single-
impacts scenarios. By application of group theory techniques, one
can derive smoothened potential and dissipation terms, which
rigorously mimic the non-elastic impacts in a limit of large
smoothening exponent. The obvious advantage of smoothened im-
pact conditions is the ability to incorporate them into an explicit,
stable integration scheme, such as the backward Euler scheme, for
example. An inevitable (although, perhaps, acceptable) shortcom-
ing of the method is in that it makes the equations stiff in finite
intervals, in finite proximity of the impact constraints. Another
shortcoming is the relative complexity of a linear stability anal-
ysis of a solution obtained for the smooth problem, relatively to


http://dx.doi.org/10.1016/j.physd.2014.10.009
http://www.elsevier.com/locate/physd
http://www.elsevier.com/locate/physd
http://crossmark.crossref.org/dialog/?doi=10.1016/j.physd.2014.10.009&domain=pdf
mailto:ovgend@tx.technion.ac.il
http://dx.doi.org/10.1016/j.physd.2014.10.009

N. Perchikov, 0.V. Gendelman / Physica D 292-293 (2015) 8-28 9

the case where genuine impact conditions are imposed. A bene-
ficial approach could be the use of a combination of impact and
smooth potentials—performing a linear stability analysis with re-
spect to the impact-potential representation, as argued to be ad-
vantageous in [11,12], integrating with the impact scheme when it
converges and with the smoothened scheme where there seems to
be an instability and it is to be determined whether it arises from
the physics or from the integration algorithm.

The present work is in a sense a continuation of [9], where
exact expressions for the displacements of the masses in an infinite
chain were obtained in the form of a convergent Fourier series.
Moreover, for every value of the (dimensionless) link stiffness, a
range of amplitudes of the time-harmonic excitation was found,
for which a localized breather exists. Interestingly, it was found
that no solution corresponding to a phonon-emitting breather
could exist. Linear stability analysis based on Floquet theory was
performed, utilizing the method of [ 13]. Three noteworthy features
were revealed. First, it was found that for a large-enough value of
the dimensionless link stiffness (smaller than the maximum value
corresponding to breather existence), one observes loss of stability
by delocalization. Second, for low enough link stiffness, there exists
a critical value of the excitation amplitude smaller than the critical
value corresponding to the limit of existence of the breather, at and
above which loss of stability by symmetry breaking takes place.
Third, it was found that the delocalization instability sub-domain
boundary is non-monotonous with respect to the link stiffness (or
the excitation amplitude).

The motivation for the present investigation is two-fold. First,
we would like to explore an additional feature of the system that
may be reflecting a state of affairs more commonly encountered in
practice. For instance, the harmonic part of a uniform on-site po-
tential may represent the effect of weak, non-dissipative coupling
to the environment. Second, the extension of the parameter space
could supply more information about generic bifurcations and sta-
bility of the DBs.

The structure of the present paper is as follows. In Section 2,
the model system is discussed and exact expressions for DBs are
derived. In Section 3, detailed characteristics of the solution are
derived for the case of single-harmonic excitation. In Section 4,
the problem of the existence of localized breathers is explored
and existence charts in the parameter-space are presented and
discussed. In Section 5, linear stability analysis is performed. In
Section 6, the equations of motion of the system are integrated
numerically for periodic boundary conditions, in order to validate
the analytic solution, to check the effect of the boundary conditions
and to verify the stability picture. Section 7 is devoted to
concluding remarks.

2. Description of the model and analytic treatment

We consider an infinite system of N identical masses, connected
by linear elastic springs, each having dimensionless rigidity y,
subjected to harmonic on-site potentials with dimensionless
rigidity « and excited by a time-periodic spatially uniform external
loading force F(t), having a period of 27r. The equation of motion
for the displacements u,(t) in this case takes the following form:

iip + 2y + Uy — YU — yu_1 = F(O),
lu,| <1, VnelZ.

(1)

We suggest that each oscillator is subjected to rigid symmetric
vibro-impact non-elastic constraints at distances +1 from the
equilibrium positions of the oscillators. Each impact results in an
abrupt change of the velocity of the impacting particle. The formal
general expression for this can be written as follows:

un“ = ¢+ +ran=U (un|t:¢*+nN’ unlt:df-ﬁ—nN) , Yn,NeZ (2)

where ¢ represents the time phase lag between the external forc-
ing and the impacts, and the impact function U is to be specified
later. At this point we limit ourselves by seeking only those solu-
tions that correspond to strongly localized breathers, when only
one particle experiences impact. Hence, we assume that the impact
conditions are fulfilled only for the zeroth mass, namely |u,| < 1
isreplaced by |uy| < 1V |n| € N, |ug| < 1. We then eliminate the
nonsmooth bounding condition by representing it as an external
loading force, following [9]:

il + 2y + K)Up — YUnp1 — YUy

j=o00
=F(t) +2p8u0 ) 8t — ¢+ 72+ 1))
j=—00
—8(t — ¢ + 27j) (3)

where 2p stands for the change in the linear momentum of the ze-
roth mass due to a single impact incident. §(x) is the Dirac-delta
function.

As the external forcing is spatially uniform, the solution may be
decomposed into a uniform and a non-uniform part:

Uy = vy + (1) (4)
where the uniform part satisfies the equation:
F@©) +xf©) = F(©) (5)

the general solution of which is:

t
fy= K*W/ sin[k'/2(t — 7)IF(7) dr. (6)

Substitution of (4) and (6) into (3) gives an equation for v, (t):
Un + (2 + €)Vn — Y Vni1 — ¥ Un-1
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Expanding the right-hand side of (7) into a cosine Fourier series
yields:

Up + QY + K)Vy — YVnp1 — Y Un—1
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1=0
The equation of motion in (8) leads to the following dispersion
relation for v, (t):

®(¢) = /K +2y(1 —cosg) 9)

where ¢ is a wavenumber. Hence, a solution may in general be
phonon-emitting and contain harmonics corresponding to prop-
agating frequencies in the strip: «/k < 21+ 1 < /k + 4y.

Consequently, we decompose Eq. (8) into two localized and one
propagating part, producing the following equations:
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