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h i g h l i g h t s

• We consider boundary conditions with temperature dependent sources/sinks and memory.
• We consider memory functions on the boundary and in the interior that differ.
• We consider nonlinear terms satisfying nonlinear balance conditions.
• We develop a general framework allowing for both weak and smooth initial data.
• We extend a Galerkin approximation scheme.
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a b s t r a c t

We present a new formulation and generalization of the classical theory of heat conduction with or
without fading memory. As a special case, we investigate the well-posedness of systems which consist of
Coleman–Gurtin type equations subject to dynamic boundary conditions, also with memory. Nonlinear
terms are defined on the interior of the domain and on the boundary and subject to either classical
dissipation assumptions, or to a nonlinear balance condition in the sense of Gal (2012). Additionally, we
do not assume that the interior and the boundary share the same memory kernel.

© 2014 Elsevier B.V. All rights reserved.

1. Introduction

In recent years there has been an explosive growth in theoreti-
cal results concerning dissipative infinite-dimensional systems
with memory including models arising in the theory of heat con-
duction in special materials and the theory of phase-transitions.
The mathematical and physical literature, concerned primarily
with qualitative/quantitative properties of solutions to thesemod-
els, is quite extensive and much of the work before 2002 is largely
referenced in the survey paper by Grasselli and Pata [1]. More
recent results and updates can be found in [2–5] (cf. also [6,
7]). A basic evolution equation considered in these references is
that for a homogeneous and isotropic heat conductor occupying
a d-dimensional (bounded) domain Ω with sufficiently smooth
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boundary Γ = ∂Ω and reads

∂tu − ω1u − (1 − ω)


∞

0
kΩ (s)1u (x, t − s) ds

+ f (u) = 0, (1.1)

in Ω × (0,∞). Here u = u (t) is the (absolute) temperature dis-
tribution, ω > 0, r = −f (u (t)) is a temperature dependent heat
supply, and kΩ : [0,∞) → R is a continuous nonnegative func-
tion, smooth on (0,∞) and vanishing at infinity, and summable.
As usual, (1.1) is derived by assuming the following energy balance
equation

∂te + div (q) = r

by considering the following relationships:

e = e∞ + c0u,

q = −ω∇u − (1 − ω)


∞

0
kΩ (s)∇u (x, t − s) ds,

(1.2)
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for some constants e∞, c0 > 0. Eq. (1.1) is always subject to either
homogeneous Dirichlet (u = 0) or Neumann boundary conditions
(∂nu = 0) onΓ ×(0,∞). The first one asserts that the temperature
is kept constant and close to a given reference temperature atΓ for
all time t > 0, while the second ‘‘roughly’’ states that the system is
thermally isolated from outside interference. This equation is also
usually supplemented by the ‘‘initial’’ conditionu : (−∞, 0] → R
such that

u|t∈(−∞,0] =u inΩ. (1.3)

These choices of boundary conditions, although help simplify sub-
stantially the mathematical analysis of (1.1)–(1.3), are actually de-
batable in practice since inmany such systems it is usually difficult,
if not impossible, to keep the temperature constant atΓ for all pos-
itive times without exerting some additional kind of control at Γ
for t > 0. A matter of principle also arises for thermally isolated
systems in which, in fact, the correct physical boundary condition
for (1.1) turns out to be the following

q · n = ω∂nu + (1 − ω)


∞

0
kΩ (s) ∂nu (x, t − s) ds

= 0 on Γ × (0,∞) , (1.4)

see, for instance, [8, Section 6]. Indeed, the condition ∂nu = 0 on
Γ × (0,∞) implies (1.4), say when u is a sufficiently smooth solu-
tion of (1.1)–(1.3), but clearly the converse cannot hold in general.

In the classical theory of heat conduction, it is common tomodel
awide range of diffusive phenomena including heat propagation in
homogeneous isotropic conductors, but generally it is assumed, as
above, that surface (i.e., boundary) conditions are completely static
or stationary. In some important cases this perspective neglects
the contribution of boundary sources to the total heat content of
the conductor. A first step to remedy this situation was done in
Goldstein [9] for heat equations. The approach presented there in-
troduces dynamic boundary conditions into an ad hoc fashion and
lacks some rigour in the case of reaction–diffusion equations. In
the final section of the paper we will make use of the usual physi-
cal principles and present a new formulation and generalization of
the classical theory. Our general approach follows that of Coleman
and Mizel [8] which regards the second law of thermodynamics as
included among the laws of physics and which is compatible with
the principle of equipresence in the sense of Truesdell and Toupin
(see the Appendix). Thus, this new formulation is expected to give
a solid foundation to the arguments employed in derivations of
the heat equation with ‘‘dynamic’’ boundary conditions developed
in Goldstein [9], or in models for phase transitions developed in
Gal and Grasselli [10,11]. Accounting for the presence of boundary
sources, the new formulation naturally leads to dynamic bound-
ary conditions for the temperature function u and that contain the
above static conditions (especially, (1.4)) as special cases (see the
Appendix). In particular, we derive on Γ × (0,∞), the following
boundary condition for (1.1):

∂tu − ν∆Γ u + ω∂nu + g (u)+ (1 − ω)

×


∞

0
kΩ (s) ∂nu (x, t − s) ds + (1 − ν)

×


∞

0
kΓ (s) (−∆Γ + β) u (x, t − s) ds = 0, (1.5)

for some ν ∈ (0, 1) and β > 0. Here kΓ : [0,∞) → R is also
a smooth nonnegative, summable function over (0,∞) such that
kΓ is vanishing at infinity. The last two boundary terms on the left-
hand side of (1.5) are due to contributions coming from a (linear)
heat exchange rate between the bulkΩ and the boundary Γ , and
boundary fluxes, respectively (cf. the Appendix).

Our goal in this paper is to extend the previous well-posedness
results of [2–5,1,6,7,12–14] in the following directions:

• by allowing general boundary processes take place also on Γ ,
Eq. (1.1) is now subject to boundary conditions of the form (1.5);

• we consider more general functions f , g ∈ C1 (R) satisfying ei-
ther classical dissipation assumptions, or more generally, non-
linear balance conditions allowing for bad behaviour of f , g at
infinity;

• we develop a general framework allowing for both weak and
smooth initial data for (1.1), (1.5), and possibly different mem-
ory functions kΩ , kΓ .

• we extend a Galerkin approximation scheme whose explicit
construction is crucial for the existence of strong solutions.

The paper is organized as follows. In Section 2, we provide
the functional setup. In Section 3, we prove theorems concerning
the well-posedness of the system, based on (1.1), (1.5), generated
by the new formulation. In the final section, we present a rigor-
ous formulation and examples in which (1.5) naturally occurs for
(1.1).

2. Past history formulation and functional setup

As in [3] (cf. also [1]), we can introduce the so-called integrated
past history of u, i.e., the auxiliary variable

ηt (x, s) =

 s

0
u (x, t − y) dy,

for s, t > 0. Setting

µΩ (s) = −ω−1 (1 − ω)m′

Ω (s) ,

µΓ (s) = −ν−1 (1 − ν)m′

Γ (s) ,
(2.1)

assuming that mS, S ∈ {Ω,Γ }, is sufficiently smooth and vanish-
ing at ∞, formal integration by parts into (A.28)–(A.29) yields

(1 − ω)


∞

0
mΩ (s)1u (x, t − s) ds

= ω


∞

0
µΩ (s)1ηt (x, s) ds,

(1 − ω)


∞

0
mΩ (s) ∂nu (x, t − s) ds

= ω


∞

0
µΩ (s) ∂nηt (x, s) ds

and

(1 − ν)


∞

0
mΓ (s) (−∆Γ u (t − s)+ βu (t − s)) ds

= ν


∞

0
µΓ (s)


−∆Γ η

t (s)+ βηt (s)

ds. (2.2)

Thus, we consider the following formulation.

Problem P. Find a function

u, ηt


such that

∂tu − ω1u − ω


∞

0
µΩ (s)1ηt (s) ds

+αω


∞

0
µΩ (s) ηt (x, s) ds + f (u) = 0, (2.3)

inΩ × (0,∞),

∂tu − ν∆Γ u + ω∂nu + ω


∞

0
µΩ (s) ∂nηt (s) ds

+ ν


∞

0
µΓ (s)


−∆Γ η

t (s)+ βηt (s)

ds + g (u) = 0, (2.4)

on Γ × (0,∞), and

∂tη
t (s)+ ∂sη

t (s) = u (t) , inΩ × (0,∞) , (2.5)
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