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h i g h l i g h t s

• A nonlinear nonlocal equation for isolated crests of unstable gaseous flames is studied.
• Polynomials encoding the 2N flame-slope poles nearly follow a 3-term recurrence.
• Meixner–Pollaczek polynomials soon provide accurate crest shapes as N grows.
• Discretized equations for squeezed Burgers crests also lead to those polynomials.
• Despite similarities such an approximation is still missing for periodic patterns.
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a b s t r a c t

The nonlinear nonlocal Michelson–Sivashinsky equation for isolated crests of unstable flames is stud-
ied, using pole-decompositions as starting point. Polynomials encoding the numerically computed 2N
flame-slope poles, and auxiliary ones, are found to closely follow a Meixner–Pollaczek recurrence; accu-
rate steady crest shapes ensue for N ≥ 3. Squeezed crests ruled by a discretized Burgers equation involve
the same polynomials. Such explicit approximate shapes still lack for finite-N pole-decomposed periodic
flames, despite another empirical recurrence.

© 2014 Elsevier B.V. All rights reserved.

1. Introduction

Sivashinsky [1] derived the first nonlinear evolution equation
for the amplitude φ(t, x) of wrinkling of premixed gaseous flames
subject to the nonlocal Darrieus [2]–Landau [3] (DL) hydrodynamic
instability, when the Atwood number A = (E − 1)/(E + 1) based
on the fresh-to-burnt density ratio E > 1 is small. The evolution
equation, first studied numerically in [4], is:

φt +
1
2
φ2
x − νφxx + H{φx} = 0 (1)

once put in scaled form, and is often termed the Michelson–
Sivashinsky (MS) equation. The subscripts in there denote partial
derivatives in scaled time (t) and abscissa (x). The constant
Markstein (dimensionless-) ‘length’ ν > 0 controls the curvature-
induced ∼νA2φxx changes in local speed (relative to fresh gas) of
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a flame front element [5]. The Hilbert transform is

H{φx}(x) =
1
π

?
+∞

−∞

φx(t, x′)

(x − x′)
dx′ (2)

if written in a form suitable for the isolated crests (φx(t, ±∞) = 0)
to be first studied here; its form adapted to 2π-periodic patterns,
towhich (1) also applies, will be recalled in Section 5. This nonlocal
term H{φx} encodes the DL hydrodynamic flame instability [1–3]:
since H(eiκx) = i.sgn(κ)eiκx the growth/decay rate of normal
modes φ ∼ eiκx+ϖ t of the linearized (1) indeed reads ϖ = |κ| −

νκ2. The nonlinear contribution −
1
2φ

2
x to φt mainly [6] is of

geometric origin [1]: the normal to the front locally makes a finite
angle γ ∼ −Aφx to the mean propagation direction (normal to
x-axis), and cos(γ ) − 1 ∼ −A2φ2

x /2.
Although its dimensioned version was originally derived as a

leading order result for A → 0+ [1], the MS equation (1) still rules
flame dynamics if corrections (removed from (1) by re-scaling)
due to two more orders are retained in the A-expansion [6,7] to
improve accuracy. Besides gaseous combustion, the MS equation

http://dx.doi.org/10.1016/j.physd.2014.10.007
0167-2789/© 2014 Elsevier B.V. All rights reserved.

http://dx.doi.org/10.1016/j.physd.2014.10.007
http://www.elsevier.com/locate/physd
http://www.elsevier.com/locate/physd
http://crossmark.crossref.org/dialog/?doi=10.1016/j.physd.2014.10.007&domain=pdf
mailto:bruno.denet@irphe.univ-mrs.fr
mailto:guy.joulin@lcd.ensma.fr
http://dx.doi.org/10.1016/j.physd.2014.10.007


B. Denet, G. Joulin / Physica D 292–293 (2015) 46–50 47

governs other unstable fronts coupled to Laplacian fields: in doped
semi-conductors [8] or in reactive infiltration [9].

Eq. (1) exhibits a number of remarkable features, most no-
tably the existence of pole-decompositions whereby the search
for φ(t, x) is converted to a 2N-body problem for the complex
poles of the front slope [10,11]; see Section 2. Thanks to this prop-
erty one can: (i) Explain the formation of front arches joined by
sharper crests whose mergers ultimately produce the widest ad-
missible steady cell; (ii) Access the latter’s arc-length vs. wave-
length curve [12], which yields the effective flame speed; (iii) Solve
stability issues [13,14] without the effect of spurious noises ham-
pering the non-self-adjoint linearized dynamics [15]; (iv) Compute
pole density and front shapes for isolated crests, and then for peri-
odic cells [11,16], if N ≫ 1; (v) Study stretched crests [17]; (vi) Set
up tools to study extensions of (1) that incorporate higher orders
of the A ≪ 1 expansion, at least in the large-N limit ([18,19] and
references therein).

It would be valuable to extend the latter works to finite
pole numbers 2N , as to encompass wrinkles of moderate wave-
lengths/amplitudes. New tools are needed and, just like in cases
(iv)–(vi) above, studying solutions representing isolated front
crests (localized bumps with φx(t, ±∞) = 0, φ(t, −x) = φ(t, x))
might be a key step to take up first. The present numerical ex-
ploratory approach finds that crest-type solutions of (1) have in-
triguing – though as yet unexplained – relationships with known
polynomials; this will ultimately provide one with approximate
crest shapes in closed form that are accurate even for finite Ns.

2. Pole-decomposition for isolated crests

As shown in [10,11] (1) admits solutions that have φ(t, x) =

−2νΣ|k|=1,...,N ln(x − zk(t)) + const. whence:

φx(t, x) =

N
k=−N

−2ν
x − zk(t)

, (3)

provided the complex-conjugate pairs of poles zk = z̄−k, |k| =

1, . . . ,N , of the analytically-continued flame slope φx(t, z) in z =

x + iB plane satisfy:

dzk
dt

=

+N
j=−N,j≠k

2ν
zj − zk

− i.sgn(ℑ(zk)), (4)

where ℑ(.) is an imaginary part. The basic identity (x − zk)−1(x −

zj)−1
= (x − zk)−1(zk − zj)−1

+ (x − zj)−1(zj − zk)−1 indeed al-
lows one to transform the cross-terms generated when squaring
(3), and a similar one followed by contour integrations in z-plane
leads to H[1/(x − zk)] = −i.sgn(ℑ(zk))/(x − zk). Combined with
φt this transform (1) in a sum of Ck/(x − zk) pieces, and (4) are the
conditions Ck = 0 for (1) to be satisfied. The solutions (3) are lo-
calized, φx(t, |x|/ν → ∞) ≈ −4Nν/x, and represent a collection
of elementary isolated flame front crests, each associated with by
a pair zk, z−k. As implied by (3) e−φ(t,z)/2ν is a polynomial with the
zn(t) as simple zeros; its degree, the total number 2N of poles, is
conserved yet arbitrary.

It is a known consequence [11] of the (zk − zj)−1 interaction
terms in (4) that nearby poles undergo mutual vertical repulsion
and horizontal attraction. This mechanism ultimately produces a
single steady arrangement of vertically aligned poles, say located
at zk = iBk = −iB−k, 1 ≤ |k| ≤ N . Such time-independent crest
shapes φ(x) obey steady versions of (1)–(4):

1
2
φ2
x + H{φx} − νφxx = 0, (5)

φx(x) = −

N
k=−N

2ν
x − iBk

, (6)

N
j=−N,j≠k

2ν
Bk − Bj

= sgn(Bk), (7)

φ(x) = −2ν ln(i2NP2N(x/i)) + const., (8)
where the even monic polynomial P2N(B) = B2N

+ · · · has the real
pole ‘altitudes’ Bk as its zeros. The (dimensionless) Markstein [5]
‘length’ ν could obviously be scaled out from (7), but it is kept as is
for future comparisons with other lengths besides the various Bk.

The N = 1 crest involves two poles iB2,k, with B2,±1 = ±ν ob-
tained from (7) as zeros of:

P2(B) ≡ B2
− ν2. (9)

For N = 2 the pole altitudes B4,k = ±3ν(1 ± 1/
√
2) are the

zeros of [11]:

P4(B) ≡ B4
− 27ν2B2

+
81
4

ν4. (10)

When N = 3 a tedious algebra is already required to write the
polynomial with irrational coefficients P6(B) [11], not to mention
formulae for its zeros. P2N(B) could not even be accessed analyti-
cally for N > 3; yet the zeros B2N,k, |k| = 1, . . . ,N , can be ob-
tained numerically for anyN , by the Newton iterative resolution of
(7) or as attractors of (4).

3. MS equation vs.MP polynomials

From the B2N,k, |k| = 1, . . . ,N , computed on solving (7) for
increasing Ns, monic polynomials PM(B) = BM

+ · · · are next
defined by P0(B) = 1, P1(B) = B and by (11) forM = 2, 3, . . .:

P2N(B) ≡


k=1,..N

(B2
− B2

2N,k),

P2N+1(B) ≡ B


k=1,..N

(B2
− b22N,k).

(11)

The auxiliary bk-zeros in there obey equations similar to (7), yet
with an extra b0 = 0 whose charge is −2ν, and for |k| = 1, . . . ,N
are roots of conditions of electrostatic-like equilibriums:

2ν
bk − 0

+

N
j=−N,j≠k

2ν
bk − bj

= sgn(bk); (12)

the equilibrium of b0 = 0 is guaranteed by b−k = −bk. Such auxil-
iary ib|k|≥1 ≠ 0 are poles of a smooth slope profile Fx(x) governed
by −

2ν
x Fx +

1
2F

2
x + H(Fx) − νFxx = 0 instead of (5); with b0 = 0

included, the ibk are poles of a singular slope fx(x) := Fx(x) −
2ν
x

obeying a locally-forced steady MS equation, viz. (5) with 2πνδ(x)
added to the right-hand side. The b2N,k were also computed numer-
ically from (12), for increasing values of N > 2.

With the above convention on labels, two successive polynomi-
als in the {PM}M=1,2... sequence have opposite parities, PM(−B) =

(−1)MPM(B). From the numerically built sequence one next per-
forms the Euclidean division of each PM(B) by its antecedent
PM−1(B), to produce:

PM(B) = BPM−1(B) − C(M)RM−2(B), (13)
where each polynomial remainder RM−2(B) has degree M − 2,
parity (−1)M−2, and may also be assumed monic on defining the
coefficient C(M) accordingly.

The numerically computed zeros βM−2,k of RM−2(B) happened
to be real for all M , which was not obvious, and, surprisingly
enough, the roots β2N−2,k of R2N−2(B) = 0 were found to nearly
coincide with the zeros, B2N−2,k, of the ‘Sivashinsky polynomials’
P2N−2(B): the fractional differences are less than 0.2% for N as low
as 11, see Table 1, and in all cases look smaller than typicalO(1/N)
quantities. Likewise, the auxiliary poles b2N−1,k were found to sit
very close to the roots of R2N−1(B) = 0.
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