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HIGHLIGHTS

A nonlinear nonlocal equation for isolated crests of unstable gaseous flames is studied.
Polynomials encoding the 2N flame-slope poles nearly follow a 3-term recurrence.
Meixner-Pollaczek polynomials soon provide accurate crest shapes as N grows.
Discretized equations for squeezed Burgers crests also lead to those polynomials.
Despite similarities such an approximation is still missing for periodic patterns.
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Recurrence

The nonlinear nonlocal Michelson-Sivashinsky equation for isolated crests of unstable flames is stud-
ied, using pole-decompositions as starting point. Polynomials encoding the numerically computed 2N
flame-slope poles, and auxiliary ones, are found to closely follow a Meixner-Pollaczek recurrence; accu-
rate steady crest shapes ensue for N > 3. Squeezed crests ruled by a discretized Burgers equation involve
the same polynomials. Such explicit approximate shapes still lack for finite-N pole-decomposed periodic
flames, despite another empirical recurrence.
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1. Introduction

Sivashinsky [1] derived the first nonlinear evolution equation
for the amplitude ¢ (t, x) of wrinkling of premixed gaseous flames
subject to the nonlocal Darrieus [2]-Landau [3] (DL) hydrodynamic
instability, when the Atwood number A = (E — 1)/(E + 1) based
on the fresh-to-burnt density ratio E > 1 is small. The evolution
equation, first studied numerically in [4], is:

1
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once put in scaled form, and is often termed the Michelson-
Sivashinsky (MS) equation. The subscripts in there denote partial
derivatives in scaled time (t) and abscissa (x). The constant
Markstein (dimensionless-) ‘length’ v > 0 controls the curvature-
induced ~vA2¢,, changes in local speed (relative to fresh gas) of
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a flame front element [5]. The Hilbert transform is
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row=_f

if written in a form suitable for the isolated crests (¢« (t, 00) = 0)
to be first studied here; its form adapted to 27 -periodic patterns,
to which (1) also applies, will be recalled in Section 5. This nonlocal
term J¢{¢y} encodes the DL hydrodynamic flame instability [ 1-3]:
since #(e**) = i.sgn(x)e** the growth/decay rate of normal
modes ¢ ~ e**@! of the linearized (1) indeed reads @ = |«| —
vic?. The nonlinear contribution —3¢? to ¢ mainly [6] is of
geometric origin [1]: the normal to the front locally makes a finite
angle y ~ —Ag, to the mean propagation direction (normal to
x-axis), and cos(y) — 1 ~ —A%p2 /2.

Although its dimensioned version was originally derived as a
leading order result for A — 07 [1], the MS equation (1) still rules
flame dynamics if corrections (removed from (1) by re-scaling)
due to two more orders are retained in the #-expansion [6,7] to
improve accuracy. Besides gaseous combustion, the MS equation
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governs other unstable fronts coupled to Laplacian fields: in doped
semi-conductors [8] or in reactive infiltration [9].

Eq. (1) exhibits a number of remarkable features, most no-
tably the existence of pole-decompositions whereby the search
for ¢(t, x) is converted to a 2N-body problem for the complex
poles of the front slope [10,11]; see Section 2. Thanks to this prop-
erty one can: (i) Explain the formation of front arches joined by
sharper crests whose mergers ultimately produce the widest ad-
missible steady cell; (ii) Access the latter’s arc-length vs. wave-
length curve [12], which yields the effective flame speed; (iii) Solve
stability issues [13,14] without the effect of spurious noises ham-
pering the non-self-adjoint linearized dynamics [ 15]; (iv) Compute
pole density and front shapes for isolated crests, and then for peri-
odic cells [11,16], if N >> 1; (v) Study stretched crests [17]; (vi) Set
up tools to study extensions of (1) that incorporate higher orders
of the A <« 1 expansion, at least in the large-N limit ([18,19] and
references therein).

It would be valuable to extend the latter works to finite
pole numbers 2N, as to encompass wrinkles of moderate wave-
lengths/amplitudes. New tools are needed and, just like in cases
(iv)-(vi) above, studying solutions representing isolated front
crests (localized bumps with ¢, (t, £00) = 0, ¢(t, —x) = ¢(t, X))
might be a key step to take up first. The present numerical ex-
ploratory approach finds that crest-type solutions of (1) have in-
triguing - though as yet unexplained - relationships with known
polynomials; this will ultimately provide one with approximate
crest shapes in closed form that are accurate even for finite Ns.

2. Pole-decomposition for isolated crests

As shown in [10,11] (1) admits solutions that have ¢(t,x) =
—2v Xjj=1,...n In(x — z(t)) + const. whence:
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provided the complex-conjugate pairs of poles z;, = z_y, |k| =
1, ..., N, of the analytically-continued flame slope ¢(t, z) inz =
X + iB plane satisfy:

+N
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where J(.) is an imaginary part. The basic identity (x — z;) ™ (x —
) '=(x—z) Nz —z)' + (x — )"z — )" indeed al-
lows one to transform the cross-terms generated when squaring
(3), and a similar one followed by contour integrations in z-plane
leads to #[1/(x — z;)] = —i.sgn(J(zx))/(x — z). Combined with
¢, this transform (1) in a sum of C/(x — z,) pieces, and (4) are the
conditions G, = O for (1) to be satisfied. The solutions (3) are lo-
calized, ¢« (t, |x|/v — 00) &~ —4Nv/x, and represent a collection
of elementary isolated flame front crests, each associated with by
a pair z, z_. As implied by (3) e#©?/2" is a polynomial with the
z,(t) as simple zeros; its degree, the total number 2N of poles, is
conserved yet arbitrary.

It is a known consequence [11] of the (z, — zj)*1 interaction
terms in (4) that nearby poles undergo mutual vertical repulsion
and horizontal attraction. This mechanism ultimately produces a
single steady arrangement of vertically aligned poles, say located
atzy = iBy = —iB_¢, 1 < |k|] < N. Such time-independent crest
shapes ¢ (x) obey steady versions of (1)—(4):
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= sgn(By), (7)
j= gk Bre = By l
¢ (x) = —2v In(i®" P,y (x/i)) + const., (8)

where the even monic polynomial Py (B) = B?N + - - - has the real
pole ‘altitudes’ By as its zeros. The (dimensionless) Markstein [5]
‘length’ v could obviously be scaled out from (7), but it is kept as is
for future comparisons with other lengths besides the various Bj.

The N = 1 crest involves two poles iB, i, with B, 11 = v ob-
tained from (7) as zeros of:

P,(B) = B> — v%. 9

For N = 2 the pole altitudes By x = +3v(1 £ 1/ﬁ) are the
zeros of [11]:

81
P4(B) = B* — 27v?*B* + Zv“. (10)

When N = 3 a tedious algebra is already required to write the
polynomial with irrational coefficients Pg(B) [11], not to mention
formulae for its zeros. P,y (B) could not even be accessed analyti-
cally for N > 3; yet the zeros Boy k, |k| = 1,..., N, can be ob-
tained numerically for any N, by the Newton iterative resolution of
(7) or as attractors of (4).

3. MS equation vs. MP polynomials

From the Boyk, |k|] = 1,..., N, computed on solving (7) for
increasing Ns, monic polynomials Py (B) = BM 4+ ... are next
defined by Po(B) = 1,P;(B) = Band by (11)forM =2, 3, .. .:

PB) = ] B —By0.

k=1,..N

(11)
Pynt1(B) =B 1_[ (B® — b3y p)-
k=1,.N
The auxiliary by-zeros in there obey equations similar to (7), yet
with an extra by = 0 whose charge is —2v,and for |[k| = 1,..., N
are roots of conditions of electrostatic-like equilibriums:
2v N 2v
-0 P sgn(b); (12)
KT =Nk kT
the equilibrium of by = 0 is guaranteed by b_; = —by. Such auxil-

iary ibjy>1 # 0 are poles of a smooth slope profile F(x) governed
by —2°F, + 3F2 + #(F,) — vFy = 0 instead of (5); with by = 0
included, the iby are poles of a singular slope f;(x) = Fy(x) — %
obeying a locally-forced steady MS equation, viz. (5) with 27 v§(x)
added to the right-hand side. The b,y x were also computed numer-
ically from (12), for increasing values of N > 2.

With the above convention on labels, two successive polynomi-
als in the {Py}m=12... sequence have opposite parities, Py (—B) =
(=1MPy,(B). From the numerically built sequence one next per-
forms the Euclidean division of each Py (B) by its antecedent
Pp—1(B), to produce:

Py (B) = BPy_1(B) — C(M)Ry_2(B), (13)

where each polynomial remainder Ry_,(B) has degree M — 2,
parity (—1)”~2, and may also be assumed monic on defining the
coefficient C(M) accordingly.

The numerically computed zeros By —_2.« of Ry—2(B) happened
to be real for all M, which was not obvious, and, surprisingly
enough, the roots Boy_z k of Ryy—2(B) = 0 were found to nearly
coincide with the zeros, Boy_3 k, Of the ‘Sivashinsky polynomials’
Pon_>(B): the fractional differences are less than 0.2% for N as low
as 11, see Table 1, and in all cases look smaller than typical @ (1/N)
quantities. Likewise, the auxiliary poles b,y_1  were found to sit
very close to the roots of Ryy_1(B) = 0.
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