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h i g h l i g h t s

• n-armed spiral waves of the complex Ginzburg–Landau equation in a disk are considered.
• We study the effect of boundaries on the asymptotic wavenumber k.
• We obtain formulas for k as a function of the domain radius and the twist parameter.
• Small radius have strong effects on the asymptotic wavenumber.
• Large radius have exponentially small effects on the asymptotic wavenumber.
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a b s t r a c t

In this paper we consider an oscillatory medium whose dynamics are modeled by the complex
Ginzburg–Landau equation. In particular, we focus on n-armed spiral wave solutions of the complex
Ginzburg–Landau equation in a disk of radius d with homogeneous Neumann boundary conditions. It is
well-known that such solutions exist for small enough values of the twist parameter q and large enough
values of d. We investigate the effect of boundaries on the rotational frequency of the spirals, which is an
unknown of the problem uniquely determined by the parameters d and q. We show that there is a thresh-
old in the parameter space where the effect of the boundary on the rotational frequency switches from
being algebraic to exponentially weak. We use the method of matched asymptotic expansions to obtain
explicit expressions for the asymptotic wavenumber as a function of the twist parameter and the domain
size for small values of q.

© 2014 Elsevier B.V. All rights reserved.

1. Introduction

Rotating spiral waves are commonly found in many physical,
chemical and biological systems both in excitable and oscillatory
media (c.f. [1–9]). Excitable media are characterized by produc-
ing oscillations only in the presence of waves, that is to say, there
has to be some steady perturbation or some inhomogeneity in the
medium in order for spiral waves to exist. Such systems are usu-
ally described in termsof a Fitzhugh–Nagumo system (c.f. [10–14]),
that is a system of partial differential equations with a unique
stable fixed point. However, oscillatory systems are able to pro-
duce oscillations in homogeneous situations. This is in general
the case of reaction–diffusion systems with a scalar diffusion that
evolve in the vicinity of a Hopf bifurcation. By formally expanding
such systems near the critical parameter, the celebrated complex

∗ Tel.: +34 972418423; fax: +34 972418792.
E-mail addresses:maria.aguareles@udg.edu, aguarelesm@gmail.com.

Ginzburg–Landau equation is obtained (see for instance Section 2
in [15]),

∂Ψ

∂t
= Ψ − (1 + ia)|Ψ |

2Ψ + (1 + ib)∇2Ψ , (1)

where a and b are real parameters and Ψ is a complex field repre-
senting the amplitude and phase of the modulations of the oscilla-
tory pattern. The class of solutions that we study in this paper are
rotational solutions of (1) with a given frequency ω. Factoring out
this rotation and introducing the following scalings in (1)

Ψ = e−iωt


1 + ωb
1 + ab

ψ, t =
t ′

1 + ωb
,

(x, y) =


1 + b2

1 + bω
(x′, y′),

gives

(1 − ib)
∂ψ

∂t ′
= (1 − |ψ |

2)ψ + iqψ(1 − k2 − |ψ |
2)+ ∇

2ψ, (2)
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where q = (a − b)/(1 + ab) and k is such that q(1 − k2) =

(ω − b)(1 + bω). The parameter q is usually known as the twist
parameter. When q = 0, spiral wave solutions of (2) have isophase
lines that are simple straight lines emanating from the origin (see
[16,17] for more details). The parameter k is known as the asymp-
totic wavenumber, as it represents a wavenumber at infinity as we
will show later. In this sense the expression q(1−k2) = (ω−b)(1+

bω) provides a dispersion relation for the spiral wave.
In this paper we focus on single n-armed spiral waves of (1) in

a disk of radius d finite, which are solutions of (2) of the form

ψ = f (r)ei(nφ+ϕ(r)), (3)

where r and φ are the polar radius and azimuthal coordinates of
the plane and n ∈ Z is the degree or winding number. This type of
solution corresponds to a single spiral emanating from the center
of the domain. It is required that f (0) = 0 so that it is continuous
at the origin.

The same type of solutions in unbounded domains have been
thoroughly studied by several authors. For example Kopell and
Howard [18], rigorously prove that, for each value of the twist pa-
rameter q, there exist solutions of the form (3) only for a particular
value of the frequency ω and therefore for a particular asymptotic
wavenumber k. Hagan in [16] studies the problem for small q in the
whole plane using the method of matched asymptotics and finds
that the asymptotic wavenumber k is exponentially small in q. In
all these works the phase function ϕ(r) is found to be ϕ(r) ∼ −kr
as r → ∞, so the isophase lines (far enough from the center of the
spiral) are of the form of Archimedean spirals, that is nφ − kr is
equal to constant. This is the reason why the constant k is usually
known as the asymptotic wavenumber. However, in experiments
or numerical simulations the domain is bound to be finite, and the
key question is whether the boundaries do alter the spiral shape
or even prevent its existence. The natural boundary conditions to
impose in both experiments and numerical computations are zero
flux boundary conditions, that is ∂νΨ |∂Ω = 0. Written in terms of
f (r) andϕ(r), this becomes f ′(d) = 0 andϕ′(d) = 0, where d is the
radius of the finite disk. In this case, one can write a set of ordinary
differential equations for f (r) and ϕ(r) by substituting (3) in (2)

0 = f ′′
+

f ′

r
− (ϕ′)2f − f

n2

r2
+ f (1 − f 2), (4)

0 = f ϕ′′
+ 2ϕ′f ′

+
ϕ′f
r

+ qf (1 − k2 − f 2). (5)

Due to the gauge invariance of solutions of (1), the phase function
ϕ does only appear in these equations through its derivative, so
that (4)–(5) is effectively a third order system of ordinary differen-
tial equations for f (r), f ′(r) and ϕ′(r). It is therefore convenient to
write v(r) = ϕ′(r)which yields the system

0 = f ′′
+

f ′

r
− v2f − f

n2

r2
+ f (1 − f 2), (6)

0 = f v′
+ 2vf ′

+
vf
r

+ qf (1 − k2 − f 2), (7)

with the following set of boundary conditions,

f (0) = v(0) = 0, f ′(d) = v(d) = 0. (8)

Paullet et al. [17] show that the system (6)–(7) along with the
boundary conditions (8) has a unique solution only for small
enough values of q and for radius d of order greater than one. Fur-
thermore, they show that such solution does only exist for a partic-
ular value of k. They use a two parameter shooting argument, with
the rotational frequency ω and the derivative of f at the origin as
the shooting parameters. Furthermore, based on their numerical
results, they conjecture that for 1-armed spirals, the critical size

of the domain is given by d = j1 = 1.841183 . . ., where jn is the
first positive zero of the first derivative of the Bessel function of the
first kind of order one. Later, Tsai in [19] provides a rigorous proof
(for a larger class of systemswhich include the complex Ginzburg–
Landau one) which states that, in general, n-armed spiral waves do
not exist if d ≤ jn. Furthermore, they show that if d > jn, there
exists a frequency ω or, equivalently, a value of the asymptotic
wavenumber k, for which there exists a spiral wave solution of (2).

However, none of these papers address the problem of how the
domain size changes the rotational frequency and thus the asymp-
totic wavenumber of the spirals. Numerical simulations presented
in [19], suggest that, in the limit of small twist parameter, the ro-
tational frequency depends strongly on the domain size, while this
dependency weakens as the domain becomes larger. In particular,
the rotational frequency in large domains approaches that of infi-
nite domains obtained by Hagan in [16]. The main contribution of
this paper is precisely to provide a set of formulas for the asymp-
totic wavenumber as a function of the twist parameter q and the
size of the domain d, for small values of q. In particular, we show
that the curve q|n| log d = π/2 separates the parameter space into
two regions where the spirals and their corresponding asymptotic
wavenumber change substantially:

• If q|n| log d & π/2, we find that

k =
2
q
exp


−γ + cn −

π

2q|n|
+

K1(kqd)
I1(kqd)


(1 + o(1)), (9)

where cn depends on the winding number n but is independent
of q and d. HereK1 and I1 are themodified Bessel functions of the
first and the second kind of order one. This expression shows
that the effect of the domain size on k and therefore, on the ro-
tational frequency, is indeed exponentially weak. In particular
we further show that this equation, in the limit as d → ∞ yields

k =
2
q
exp


−γ + cn −

π

2q|n|


(1 + o(1)), (10)

which corresponds to the asymptotic wavenumber of a single
spiralwave in an infinite domain first obtained byHagan in [16].

• If q|n| log d ≪ π/2, the asymptotic wavenumber has a stronger
dependence on the domain size given by the following expres-
sion:

k =
1
qd
(2q|n| tan(q|n| log d))1/2 (1 + o(1)).

To obtain these expressions we use the method of matched
asymptotic expansions. We use a two-parameter expansion in the
two small parameters of the problem, namely q and ϵ = 1/d. Fol-
lowing the standard procedure, we first construct a solution close
to the spiral’s center or spiral’s core (the so-called inner solution),
which we thenmatch to the solution outside of the spiral core. The
latter is known as the outer solution. However, dealing with two
parameters rather than one causes a set of difficulties in thematch-
ing procedure which should be addressed differently depending
on whether q|n| log d is close or far from the already mentioned
threshold value π/2.

The paper is organized as follows. First, in Section 2we consider
a simpler one-parameter expansion in q while keeping ϵ = 1/d
as an order one quantity. We find that the resulting asymptotic
formula for k breaks down as soon as the domain size d becomes
greater than one. However, according to [17,19], the size of the do-
main must always be greater than jn > 1, so the actual domains
where spiral wave solutions exist are effectively of order greater
than one, which shows that the solutions in Section 2 are indeed
useless in practice. Hence, in Section 3 we consider the full two-
parameter expansion when both q and ϵ are small and obtain the
expressions for the asymptotic wavenumber (9) and (10). We start
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