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h i g h l i g h t s

• A variational theory is developed for shearless transport barriers in unsteady flows.
• Shearless barriers are shown to be special null-geodesics of a Lorentzian metric.
• We devise an algorithm for automated detection of shearless barriers.
• The algorithm is tested on the standard non-twist map.
• Shearless barriers of a chaotically forced Bickley jet are studied.
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a b s t r a c t

We develop a variational principle that extends the notion of a shearless transport barrier from steady
to general unsteady two-dimensional flows and maps defined over a finite time interval. This principle
reveals that hyperbolic Lagrangian Coherent Structures (LCSs) and parabolic LCSs (or jet cores) are the
two main types of shearless barriers in unsteady flows. Based on the boundary conditions they satisfy,
parabolic barriers are found to be more observable and robust than hyperbolic barriers, confirming
widespread numerical observations. Both types of barriers are special null-geodesics of an appropriate
Lorentzian metric derived from the Cauchy–Green strain tensor. Using this fact, we devise an algorithm
for the automated computation of parabolic barriers. We illustrate our detection method on steady and
unsteady non-twist maps and on the aperiodically forced Bickley jet.

© 2014 Elsevier B.V. All rights reserved.

1. Introduction

Consider a two-dimensional dynamical system with a family
of invariant closed curves that are formed by periodic or quasi-
periodic trajectories. The trajectories trace the invariant curves at
specific frequencies. A shearless transport barrier then is generally
defined as the invariant curve whose frequency admits a local
extremumwithin the family. This definition ties shearless barriers
fundamentally to recurrent (i.e., steady, periodic or quasi-periodic)
flows where the necessary frequencies are well-defined. Here
we extend the notion of a shearless transport barrier to two-
dimensional flows and maps with general time-dependence.
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In steady and time-periodic problems of fluid dynamics and
plasma physics, shearless (or non-twist) barriers have been found
to be particularly robust inhibitors of phase space transport [1–4].
For illustration, consider a steady, parallel shear flow

ẋ = u(y), u′(y0) = 0. (1)
ẏ = 0,

on a domain periodic in x. The y = y0 line marks a jet core, whose
impact on tracer patterns is shown in Fig. 1 in a particular exam-
ple with y0 = 0. Note the unique material signature of the shear-
less barrier, deforming the tracer blob initialized along it into a
boomerang-shaped pattern, by contrast, another tracer blob sim-
ply stretches under shear.

The flow (1) is an idealized model of the velocity field inside
atmospheric or oceanic zonal jets, or helical magnetic field lines in
a tokamak [5]. As a dynamical system, (1) represents an integrable
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Fig. 1. Left: The velocity profile of the steady flow (1) for u(y) = 1 − y2 . Right:
Streamlines for the same flow. The thick line at y = 0 marks the shearless
streamline that acts as a jet core. The tracer disk located on the shearless line
(magenta circle) deforms into a blunt arrow shape symmetrically under advection
to time t = 9. The tracer disk located away from the shearless line (red circle) has a
markedly different deformation pattern. The boundary condition in the x-direction
is taken to be periodic with period 2π . (For interpretation of the references to color
in this figure legend, the reader is referred to the web version of this article.)

system with the Hamiltonian H(y) =
 y
0 u(η)dη. Its horizontal

trajectories along which the Eulerian shear u′(y) vanishes are
referred to as shearless barriers. Along these barriers, H ′′(y0) = 0
holds, thus the circle y = y0 does not satisfy the twist condition of
classic KAM theory [6].

Yet numerical studies of [1–3,7] show that such barriers are
more robust under steady or time-periodic perturbations than
any other nearby KAM tori. Related theoretical results for two-
dimensionalmapswere given in [8].More recently, degenerate tori
for steady 3D maps were considered in [9]. In addition, a general
a posteriori result on non-twist tori of arbitrary dimension that are
potentially far from integrable has been obtained by [10]. However,
no general theory of shearless transport barriers for unsteady flows
has been established.

The need for such a general theory of unsteady shearless bar-
riers clearly exists. In plasma physics, computational and ex-
perimental studies suggest that shearless barriers enhance the
confinement of plasma in magnetic fusion devices [11–14], which
generate turbulent velocity fields with general time dependence.
In this context, a description of shearless barriers is either under-
stood in models for steady magnetic fields [14] or inferred from
scalar quantities (e.g. temperature, density) in more complex un-
steady scenarios [11–13].

In fluid dynamics, shearless barriers are of interest in the con-
text of zonal jets. Rossbywaves are the best knownandmost robust
transport barriers in geophysical flows [15–17], yet only recent
work attempts to describe their attendant unsteady jet cores in
the Lagrangian frame of an unsteady flow. Themethod put forward
in [18] seeks such Lagrangian shearless barriers as trenches of the
finite-time Lyapunov exponent (FTLE) field. However, just as the
examples in [19] show that FTLE ridges do not necessarily corre-
spond to hyperbolic Lagrangian structures, FTLE trenches may also
fail to mark zonal jet cores (see Example 1 in Section 7.2 below).

Here we develop a variational principle for shearless barriers as
centerpieces of material strips showing no leading order variation
in Lagrangian shear. This variational principle shows that shearless
barriers are composed of tensorlines of the right Cauchy–Green
strain tensor associated with the flow map. Most stretching
or contracting Cauchy–Green tensorlines have previously been
identified as best candidates for hyperbolic Lagrangian Coherent
Structures (LCSs) [20,21], but no underlying global variational
principle has been known to which they would be solutions. The
present work, therefore, also advances the theory of hyperbolic
LCS, establishing them as shearless transport barriers under fixed
(Dirichlet-type) boundary conditions.

Our main result is that parabolic transport barriers (jet cores)
are also solutions of the same shearless Lagrangian variational
principle, satisfying variable-endpoint boundary conditions. They
are formed by minimally hyperbolic, structurally stable chains
of tensorlines that connect singularities of the Cauchy–Green
strain tensor field. We develop and test a numerical procedure

Fig. 2. The evolution of a unit normal vector n(s) of a material line γ under the
linearized flow map ∇F t

t0 .

that detects such tensorline chains, thereby finding generalized
Lagrangian jet cores in an arbitrary, two-dimensional unsteady
flow field in an automated fashion.

2. Notation and definitions

Let v(x, t) denote a two-dimensional velocity field, with x
labeling positions in a two-dimensional region U , and with t
referring to time. Fluid trajectories generated by this velocity field
satisfy the differential equation

ẋ = v(x, t), (2)

whose solutions are denoted by x(t; t0, x0), with x0 referring to
the initial position at time t0. The evolution of fluid elements is
described by the flow map

F t
t0(x0) := x(t; t0, x0), (3)

which takes any initial position x0 to its current position at time t .
Lagrangian strain in the flow is often characterized by the right

Cauchy–Green strain tensor field C(x0) =

∇F t

t0(x0)
T

∇F t
t0(x0),

whose eigenvalues λi(x0) and eigenvectors ξi(x0) satisfy

Cξi = λiξi, |ξi| = 1, i = 1, 2; 0 < λ1 ≤ λ2, ξ1 ⊥ ξ2.

The tensorC , aswell as its eigenvalues and eigenvectors, dependon
the choice of the times t and t0, but we suppress this dependence
for notational simplicity.

3. Stability of material lines

Consider a material line (i.e., a smooth curve of initial condi-
tions) γ at time t0, parametrized as r(s)with s ∈ [0, σ ]. If n(s) de-
notes a smoothly varying unit normal vector field along γ , then the
normal repulsion ρ of γ over the time interval [t0, t] is given by [19]

ρ(r, n) =
1

n, C−1(r)n
 , (4)

measuring at time t the normal component of the linearly advected
normal vector ∇F t

t0(r)n (see Fig. 2). If ρ > 1 pointwise along
γ , then the evolving material line F t

t0(γ ) is repelling. Similarly, if
ρ < 1 holds pointwise along γ , then the evolving material line
F t
t0(γ ) is attracting.
Hyperbolic Lagrangian coherent structures (LCSs) are pointwise

most repelling or most attracting material lines with respect to
small perturbations to their tangent spaces [19,22,21]. Repelling
and attracting LCSs, respectively, are obtained as special trajecto-
ries of the differential equations

ṙ = ξ1(r), ṙ = ξ2(r), (5)

that stay bounded away from points where ξi cease to be
well-defined. These degenerate points x0 are singularities of the
Cauchy–Green tensor field, satisfying C(x0) = λI for some λ > 0.
(For an incompressible flowwe have λ = 1.) The trajectories of the
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