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• Novel approaches using the average of higher order moments for the functional relation between noisy fluctuation and node degree.
• Improving the accuracy of functional relation for the network with strong heterogeneity in degree distribution.
• Investigation of the functional relation between noisy fluctuation and node input strength.
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a b s t r a c t

For the coupled stochastic dynamical system, we study the functional relation between noisy fluctuation
and node degree. We extend the approaches for obtaining functional relation in Wang et al. (2009) to
the weighted network whose link weight is dependent on the node degree. For the network with strong
heterogeneity in degree distribution, we find that the theoretical result derived from the approaches in
Wang et al. (2009) shows disagreement with numerical results. Here, we propose novel approaches using
the average of higher order moments and improve the accuracy of functional relation between noisy
fluctuation and node degree. Also, we investigate the functional relation of noisy fluctuation versus node
input strength.

© 2014 Elsevier B.V. All rights reserved.

1. Introduction

Recently there have been growing interests for inferring the
network structure from measuring nodal time series. The source
of these interests arises from many scientific areas. Examples are
interacting proteins or genes [1], complex brain networks [2],
ecological food webs [3], to name a few. In this regard, Yu et al. [4]
showed that the topology of network can be estimated using the
autosynchronization method. The autosynchronization method is
introduced by Parlitz [5] and the parameters of controlled system
converge to those of real system via appropriate control signal.
Later, an extension of Ref. [4] was proposed based on a general
LaSalle’s principle [6]. By applying external driving and measuring
the response dynamics, Timme [7] reconstructed the connectivity
of coupled oscillator network. Also, the L1 norm optimization
applied to estimate the topology of networks whose connections
are sparse [8]. In the presence of noise, Ren et al. [9] showed that
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the network connectivity can be successfully reconstructed by the
dynamical correlation of nodes.

With approximated numerical derivatives based on multivari-
ate time series, the problem of inferring network structure can be
casted into the problem of finding the solution of simultaneous
equations. From this point of view, the topology of network was
reconstructed by the error function minimization for the overde-
termined system [10] and by compressive sensing for the un-
derdetermined system [11]. Through repeatedly reinitializing the
dynamics by random phase resetting, the network structure was
obtained by averaging over the ensemble [12]. Moreover, Kim
et al. [13] showed that the network link weights can be estimated
from the inverse phase synchronization indices.

Concerned with the work of Ren et al. [9], it was shown
that noisy fluctuation ⟨∆x2j ⟩T scales with the node degree kj as
⟨∆x2j ⟩T ∼ k−1

j [14]. Here the noisy fluctuation is defined as
⟨∆x2j ⟩T = ⟨(xj − ⟨x⟩E)2⟩T , where ⟨·⟩E and ⟨·⟩T denote the ensemble
and time average, respectively. This scaling relation indicates that
for higher degree node such as hub, the node shows smaller fluc-
tuation from the ensemble average. But, for smaller degree node
such as periphery, the node shows larger fluctuation. It holds for
a variety of network topologies and node dynamics. Using the re-
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lation between noisy fluctuation and node degree, the authors of
Ref. [14] can estimate the degree of node from nodal time series.

On the other hand, it was known that strong heterogeneity
in degree distribution could reduce the synchronizability [15].
To overcome this heterogeneity, Motter et al. [16] proposed to
scale the coupling strength by the power of node degree. That is,
the element of coupling matrix is represented by Gjl = Ljl/k

β

j .
Here, L is Laplacianmatrix of underlying network: the off-diagonal
entry is defined to be Ljl = −1 if there exists a link from node
l to j, Ljl = 0 otherwise. The diagonal element is represented
by Ljj = kj = −

N
l=1,l≠j Ljl and β is a tunable parameter.

Although Motter et al. [16] introduced the coupling scheme Gjl =

Ljl/k
β

j to decrease the heterogeneity of degree, the role of a hub
and peripheral node can be exchanged by altering the value of
β(0, 1, 2). When β = 0, G returns to intrinsic underlying network
L. For the case of β = 1, all nodes get same input strength
sjin = −

N
l=1,l≠j Gjl = −

N
l=1,l≠j Ljl/kj = 1. Otherwise, when

β = 2, the node input strength is given by sjin = −
N

l=1,l≠j Gjl =

−
N

l=1,l≠j Ljl/k
2
j = 1/kj. Then, for the case of β = 2, higher degree

node gets smaller influence from network. While lower degree
node gets larger influence. The case of β = 2 might be considered
as unusual coupling scheme. However, the hub does not always
drive the periphery. On the contrary to ordinary case of β = 0, the
information can flow from the periphery to hub, not from the hub
to periphery [17]. Note that the distribution of node input strength
becomes more heterogeneous in the case of β = 2. Because nodes
either have a small number of very strong connections or a large
number of very weak connections. However, our motivation is not
to decrease the heterogeneity of input strength but to investigate
the change of functional relations of noisy fluctuation versus node
degree and versus node input strength by changing the role of a
hub and peripheral node.

In this paper, we find that the functional relation derived
from Ref. [14] shows disagreement with numerical results for
the network with strong heterogeneity in degree distribution.
Then, we propose novel theoretical approaches for obtaining the
functional relation and show that it is more accurate than the
results derived from the approaches in Ref. [14]. The remaining
of this paper is organized as follows. In Section 2, we describe the
model of coupled stochastic dynamical system. Section 3 presents
the theoretical results derived from the approaches in Ref. [14]. In
Section 4, we propose novel theoretical approaches and improve
the accuracy of functional relation between noisy fluctuation and
node degree. Conclusions are given in Section 5.

2. Model

We consider the coupled stochastic dynamical system de-
scribed as

ẋj = F(xj)− c
N
l=1

GjlH(xl)+ ξj, (1)

where xj is a multi-dimensional variable of jth node and F denotes
the node dynamics. c , H, and Gjl are a coupling strength, coupling
function, and element of coupling matrix (Ljl/k

β

j ), respectively.
In the remaining portion of the paper, we only consider the
symmetric underlying network L. The Gaussian white noise ξj with
intensity σ 2 satisfies

⟨ξj(t)⟩T = 0, ⟨ξj(t)ξl(t ′)⟩T = σ 2δjlδ(t − t ′). (2)

Here, we deal with four different types of networks: Erdős–Rényi
(ER) [18], Barabási–Albert (BA) [19],Watts–Strogatz (WS) [20], and
configuration model (CM) [21,22].

As the node dynamics, the following three dynamical processes
are considered: consensus dynamics [23], Rössler system [24], and
Kuramoto oscillators [25]. In the presence of noise, described by
the adjacency matrix representation (Ajl = −Ljl, Ajj = 0), the
consensus dynamics is written by

ẋj = c
N
l=1

Ajlk
−β

j (xl − xj)+ ξj. (3)

For the chaotic dynamics, we consider Rössler system described as

ẋj = −yj − zj + c
N
l=1

Ajlk
−β

j (xl − xj)+ ξj,

ẏj = xj + 0.2 yj + c
N
l=1

Ajlk
−β

j (yl − yj), (4)

żj = 0.2 + zj(xj − 9)+ c
N
l=1

Ajlk
−β

j (zl − zj).

Finally, Kuramoto oscillators are represented by

θ̇j = ωj + c
N
l=1

Ajlk
−β

j sin(θl − θj)+ ξj, (5)

where θj and ωj are the phase and frequency of jth oscillator,
respectively.

3. Results derived fromWang et al.

Wang et al. [14] proposed theoretical approaches for obtaining
the functional relation between noisy fluctuation and node degree
for the couplingmatrix L, i.e., for the case ofβ = 0. In the following,
we extend it for arbitrary β . Let us assume that the coupled
dynamical systems in Eqs. (3)–(5) exhibit the synchronization
without noise term ξj and the addition of noise does not drastically
change the dynamical state. Therefore the dynamical variable of
each node just fluctuates around the synchronous state, that is,
mean trajectory over the ensemble ⟨x⟩E =

N
l=1 xl/N . Then the

variational equation about the mean trajectory can be written by

∆ẋj ≃ −ck−β+1
j ∆xj + ck−β

j

N
l=1

Ajl∆xl + ξj, (6)

where ∆xj = xj − ⟨x⟩E . For the consensus dynamics, the sign of
approximately equal must be replaced by that of equal. Otherwise,
Eq. (6) is an approximated result. For Kuramoto oscillators, ∆xj
denotes∆θj where∆θj = θj − ⟨θ⟩E .

First approximation for obtaining the functional relation is to
neglect the second term in right-hand side of Eq. (6). Because the
summation of ∆xl is negligible comparing to the Gaussian noise
ξj [14]. In doing so, we obtain a linear stochastic differential equa-
tion and the power spectral density (PSD) of∆xj is represented by

S∆xj(f ) =

 1

2π if + ck−β+1
j


2

Sξj(f ) =
σ 2

4π2f 2 + c2k−2β+2
j

. (7)

From the result of Eq. (7), we can approximate the PSD of neglected
term (χj := ck−β

j
N

l=1 Ajl∆xl) in Eq. (6) by assuming that ∆xl
are independent. By approximating k−2β+2

l in summation term to
⟨k⟩−2β+2, the PSD of χj is described as

Sχj(f ) ≃ c2k−2β
j

N
l=1

AjlS∆xl(f ) ≃
c2k−2β+1

j σ 2

4π2f 2 + c2⟨k⟩−2β+2
. (8)

Now let us return to Eq. (6). It can be rewritten by

∆ẋj + ck−β+1
j ∆xj = χj + ξj. (9)
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