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h i g h l i g h t s

• We introduce a thermodynamically consistent model for multi-phase flows.
• The model allows for phase transitions and chemical reactions.
• We investigate physically admissible sharp interface limits.
• The limit is an Allen–Cahn/Euler system with admissible interfacial conditions.
• The model allows for two phase equilibria with surface tension in the leading order.
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a b s t r a c t

We introduce a new thermodynamically consistent diffuse interface model of Allen–Cahn/Navier–Stokes
type formulti-component flowswith phase transitions and chemical reactions. For the introduced diffuse
interface model, we investigate physically admissible sharp interface limits by matched asymptotic
techniques. We consider two scaling regimes, i.e. a non-dissipative and a dissipative regime, where we
recover in the sharp interface limit a generalized Allen–Cahn/Euler system for mixtures with chemical
reactions in the bulk phases equipped with admissible interfacial conditions. The interfacial conditions
satisfy, for instance, a Young–Laplace and a Stefan type law.

© 2014 Elsevier B.V. All rights reserved.

1. Introduction

In this study, we propose a model for chemically reacting vis-
cous fluid mixtures that may develop a transition between a liquid
and a vapor phase. The mixture consists of N constituents and is
described by N partial mass balance equations and a single equa-
tion of balance for the barycentricmomentum.Weexclusively con-
sider isothermal evolutions. To describe the phase transition, we
introduce an artificial phase field indicating the present phase by
assigning the values 1 and −1 to the liquid and the vapor phase,
respectively. Within the transition layer between two adjacent
phases, the phase field smoothly changes between 1 and−1. How-
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ever, usually the transition layers are very thin leading to steep gra-
dients of the phase field.

This model belongs to the class of diffuse interface models. An
alternative model class, that likewise represents phase transitions
in fluid mixtures, contains sharp interface models. From the mod-
eling point of view, sharp interface models have a simpler physical
basis than diffuse interface models. For this reason, there arises al-
ways the non-trivial question if the sharp interface limits of a given
diffuse model lead to admissible sharp interface models. The main
concern of this paper is a careful discussion of this problem.

While diffuse interface models solve partial differential equa-
tions in the transition region, sharp interface models deal with
jump conditions across the interface between the phases. Some-
times the jump conditions are mixed with geometric partial dif-
ferential equations.

For two phases without chemical reactions, our compressible
model reduces to an Allen–Cahn/Navier–Stokes typemodel, which
is quite similar to the model derived by Blesgen [1]. Blesgen’s
model has been investigated analytically in [2,3], where existence
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of strong local-in-time solutions and weak solutions has been
shown.

We would like to emphasize that the thermodynamical ap-
proaches of Blesgen’s system and our derived model are differ-
ent. For instance, the phase field variable χ in Blesgen’s model,
which satisfies the Allen–Cahn equation, is a physical quantity,
namely the local mass fraction of one phase, whereas in our pro-
posedmodel χ simply indicates the present phase. In addition, the
function h that interpolates between the phases, which will be de-
scribed later, is linear in Blesgen’s model. This means that, in con-
trast to our proposed model, in general the equilibria depend on
the chosen interpolation function h, which implies that Blesgen’s
system runs into different equilibria. Our approach with χ as an
artificial phase field variable permits to obtain physical meaning-
ful jump conditions at the interface agreeing with classical laws of
thermodynamics.

A modified version of Blesgen’s model can be found in [4]. In
contrast to [1] and our introducedmodel, Witterstein [4] describes
a mixture of two compressible fluids, which physically differ,
exclusively by different Lamé coefficients which are assumed
to depend on the phase field parameter and the mass density.
Witterstein’s model [4] also differs in the choice of the free energy,
which contains two length scales. Moreover, the minima of the
double well potential in the free energy have to be of different
heights. This implies that the energy can only be controlled for
transition regions with fixed width but not in the sharp interface
limit.

Related to our work are diffuse interface models for incompre-
ssible and quasi-incompressible fluids. A diffuse interfacemodel of
Navier–Stokes–Cahn–Hilliard type for two incompressible, viscous
Newtonian fluids, having the same densities, has been introduced
by Hohenberg and Halperin in [5]. That model has been modified
in several thermodynamically consistent ways such that different
densities are allowed, see e.g. [6–8]. For existence results of strong
local-in-time solutions and weak solutions, we refer to [9–11]. A
diffuse interface model for two incompressible constituents which
permits the transfer of mass between the phases due to diffusion
andphase transitions has beenproposed in [12,13]. The densities of
the fluids may be different, which leads to quasi-incompressibility
of the mixture.

Our newly introduced diffuse interface model is given by the
following system of PDEs for (ρ, ρα=1,...,N−1, v, χ ) in [0, Tf ) × Ω ,
Ω ⊂ Rd:

∂tρ + div(ρv) = 0,

∂tρα + div(ραv)− div
N−1
β=1

Mαβ∇(µα − µN)



=

NR
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αmαM i

r


1 − exp
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,

∂t(ρv)+ div(ρv ⊗ v)+ ∇p + div (γ∇χ ⊗ ∇χ − σNS) = 0,

ρ∂tχ + ρv · ∇χ = −Mp


∂ρψ

∂χ
− γ∆χ


,

where p is the pressure, T the temperature,mα the atomic mass of
constituent α, k the Boltzmann constant,

ρψ = W (χ)+
γ

2
|∇χ |

2
+ ρf (ρ1, . . . , ρN , χ) and

µα =
∂(ρψ)

∂ρα

with ρf (ρ1, . . . , ρN , χ) := h(χ)ρψL(ρ1, . . . , ρN) + (1 − h(χ))
ρψV (ρ1, . . . , ρN). In addition, γ i

α are the stoichiometric coeffi-
cients of NR possible chemical reactions, Ai the affinities and Mαβ ,
M i

r and Mp the mobilities.

The work is organized as follows. In the upcoming section
we derive the thermodynamically consistent model for multi-
component flows with phase transitions and chemical reactions.
Section 3 is devoted to the non-dimensionalization, the intro-
duction of two interesting scaling regimes of the system and the
setting of asymptotic analysis. Finally, in Sections 4 and 5, we
determine the sharp interface limits for the two different scaling
regimes introduced previously. We would like to emphasize that
Section 4.2 contains a conjecture on the incapability of viscous dif-
fuse models to generate viscous sharp models.

2. The mixture model

2.1. Constituents and phases

We consider a fluidmixture consisting ofN constituents A1, A2,
. . . , AN indexed by α = 1, 2, . . . ,N . The constituents may be
subjected to chemical reactions. There are NR reactions, indexed
by i = 1, 2, . . . ,NR, of the general type

ai1A1 + ai2A2 + · · · + aiNAN � bi1A1 + bi2A2 + · · · + biNAN . (2.1)

Thus, there are forward (f) as well as backward (b) reactions. The
constants (aiα)α=1,2,...,N and (biα)α=1,2,...,N are positive integers and
γ i
α = biα − aiα denotes the stoichiometric coefficient of constituent
α in the reaction i = 1, . . . ,NR.

The fluidmixturemay exist in the two phases, liquid (L) and va-
por (V). The two phases may coexist. In this paper, we describe the
phases in the diffuse interface setting,where the interface between
adjacent liquid and vapor phases ismodeled by a thin layer.Within
the layer, certain thermodynamic quantities smoothly change from
values in one phase to different values in the adjacent phase. How-
ever, usually steep gradients occur.

2.2. Introduction of basic quantities and basic variables

Two phase mixtures can be modeled within three different
model classes, i.e. Classes I–III. Class I considers as basic variables
the mass densities (ρα)α=1,2,...,N of the constituents, the barycen-
tric velocity v, the temperature T and the phase field χ , which is
used to indicate the present phase at (t, x). It assumes values in
the interval [−1, 1] with χ = 1 in the liquid and χ = −1 in
the vapor. The basic variables of Class II are the mass densities
(ρα)α=1,2,...,N , the velocities (vα)α=1,2,...,N of the constituents, the
temperature T and the phase field χ . Finally, in Class III we have
the mass densities (ρα)α=1,2,...,N , the velocities (vα)α=1,2,...,N , the
temperatures (Tα)α=1,2,...,N of the constituents and the phase field
χ . In this study, we choose a description within Class I. The mix-
ture occupies a region Ω ⊂ Rd. At any time t ≥ 0, the ther-
modynamic state of Ω is described by N partial mass densities
(ρα)α=1,2,...,N , the barycentric velocity and by the temperature T
of the mixture. These quantities may be functions of time t ≥ 0
and space x = (xi)i=1,...,d = (x1, . . . , xd) ∈ Ω. However, we re-
strict ourselves to isothermal processes so that T appears only as a
constant parameter in the equations.

Partial mass densities and partial velocities are used to define
the total mass density ρ of the mixture and its barycentric
velocity v

ρ :=

N
α=1

ρα, v :=
1
ρ

N
α=1

ραvα. (2.2)

The diffusion velocities uα and the corresponding diffusion fluxes
Jα are defined by

uα := vα − v, Jα := ραuα with
N
α=1

Jα = 0 . (2.3)
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