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h i g h l i g h t s

• A vertically tapped particle column has dynamics approximated by that of a ball.
• The dynamics can be further approximated by iterating a planar diffeomorphism.
• Simulations show the approximations are good predictors of the column dynamics.
• The efficacy of the approximations is also supported by advanced visualizations.
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a b s t r a c t

A low-dimensional center-of-mass dynamical model is devised as a simplified means of approximately
predicting some important aspects of the motion of a vertical column comprised of a large number of
particles subjected to gravity and periodic vertical tapping. Thismodel is investigated first as a continuous
dynamical system using analytical, simulation and visualization techniques. Then, by employing an
approach analogous to that used to approximate the dynamics of a bouncing ball on an oscillating flat
plate, it is modeled as a discrete dynamical system and analyzed to determine bifurcations and transitions
to chaotic motion along with other properties. The predictions of the analysis are then compared –
primarily qualitatively – with visualization and simulation results of the reduced continuous model, and
ultimately with simulations of the complete system dynamics.

© 2014 Elsevier B.V. All rights reserved.

1. Introduction

Continuing our work in [1], we delve even more deeply into
the dynamics of a vertically tapped column of particles; this time
exploring how certain ‘‘averaged’’ approximations can yield useful
information about the dynamics of the complete system such as
the identification of a key dimensionless bifurcation parameter
related to the acceleration of the tap that signals period-doubling
cascades and transitions to chaos. The underlying idea or theme in
using such approximate models is that the loss in accuracy may be
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more than compensated for by enhanced amenability to detailed
mathematical analysis. In particular, we focus on the dynamics of
the center of mass of the particle configuration as it evolves under
the action of gravity and the periodic tapping force applied via the
floor (bottom) of the configuration, which can be approximated by
a two-degree-of-freedom system that is essentially ‘equivalent’ to
a single ball driven by the oscillatory motion of the floor (as borne
out by qualitative comparisons with simulations of the complete
system). Naturally, one cannot expect that themotion of the center
of mass is capable of illuminating many of the more subtle aspects
of the dynamics of the complete system; however, it is plausible
that transitions to chaotic regimes can be rather well predicted
by the reduced system. The reason for this is that chaotic motions
of individual particles would typically not cancel one another in
the averaging that defines the position of the center of mass, and
the dynamics of the center of mass cannot possibly be chaotic
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unless the same is true for at least one of the particles in the
complete system. What we found to be most surprising is that
the reduced (center of mass) dynamics appears to be a reasonably
good bellwether for other types of changes in the qualitative
dynamics such as period-doubling bifurcations and is rather useful
for characterizing other dynamical phenomena for the complete
system such as the existence of periodic orbits of arbitrarily large
period as well as (what appear to be) strange attractors.

We begin in Section 2 with a continuous one-dimensional
dynamical model for the vertical column of particles (assuming a
modifiedWalton–Braun type interaction law with different spring
constants for loading and unloading [2,3] and an impulse-like
oscillatory motion for the floor). The governing equations for the
motion of the column of particles are then expressed as a system
of second-order ordinary differential equations (ODEs) in the usual
Newtonian way (and the initial equilibrium configuration of the
particle stack is derived) and this is recast as a system of first-
order equations in the standard manner. In these systems, the
role of inelasticity (which causes dissipation in the dynamics) is
highlighted andquantified by a parameter that is directly related to
the coefficient of restitution, which is themore familiarmeasure of
energy loss in the particle–particle and particle–floor interactions.
It is interesting and instructive to compare our modeling and
analysis with such related investigations as [4–19].

In Section 3, we use the equations of motion of the complete
system to determine the reduced governing equations for the
dynamics of the center of mass. Taking full advantage of Newton’s
third law of motion, we show that these reduced equations make
it possible to uniquely determine the dynamics of the mass center
by a single second-order ODE if the motion of the particle nearest
the floor is known. Whence, the assumption of a reasonable
relationship between the motion of the particle nearest the floor
and the center of mass (which becomes more accurate as the
number of particles increases) enables us to approximate the
motion of the center of mass by a second-order ODE that is
equivalent to a single ball bouncing on the oscillating floor—albeit
a ball with mass equal to the total mass of particles in the full
system that is acteduponby a suitablymodified gravitational force.
It should be noted here that the apparent relationship between
the bouncing ball and oscillating granular column dynamics was
observed about a decade ago, empirically justified, investigated
in some detail and more or less confirmed via simulation by
Luding et al. [20,21] and Brennen et al. [22]. An inescapable and
quite interesting inference that one perforce draws from this
equivalence is that the dynamics of the center of mass is at least
as rich and varied as that of a ball bouncing on a vibrating plate (as
delineated in such studies as [23–26]).

Next, in Section 4, we further simplify our reduced continuous
model for the evolution of the center of mass using two discrete
dynamical system approximations that rather accurately portray
certain key features of the motion of the reduced center of mass
model. The first discrete dynamical systems model is developed
along the lines formulated by Holmes [24], and also turns out
to be basically equivalent to the standard map [24,27–29]. We
performan in-depth analysis of dynamics of thismodel that reveals
that there is an acceleration-(or energy-) like non-dimensional
parameter that governs transitions from regularmotions to period-
doubling bifurcations and ultimately to chaotic dynamics; it is the
same parameter that has been shown to play a pivotal role in
bifurcations of bouncing-ball dynamics and (via simulation and
experiments) the motion of the complete stack of particles.

Section 5 is devoted to wide-ranging simulations of the
dynamics of a tapped column of a large number of particles
(computing the trajectories of the individual particles) and the
corresponding motion of the center of mass of the configurations.
These simulations – performed using a very effective granular

dynamics based code that has been refined and upgraded over
several years (cf. [1,7,15,30,31]) – are focused on observing how
the complete system and center of mass reductions respond to
changes in several important parameters, both physical and non-
dimensional, with an eye toward comparisons with predictions
from the analytical investigation in the preceding sections. It is
found that there is rather good agreement between the analytical
and computational results.

In addition to establishing agreement between the analytical
and simulation aspects of our investigation, in Section 6we include
comparisons of the reduced center of mass motion results with
conclusions obtained using dynamical visualization techniques
such as those described in [32–35]. In particular, appropriate
phase space visualization methods are used on the continuous
second-order ODEmodel selected to approximate the dynamics of
the center of mass of the configuration. These methods typically
involve the identification of several types of coherent phase
space structures that have been found to correspond to various
dynamical regimes and transitions among them. Comparisons at
several levels for numerous parameter values reveal remarkably
good qualitative agreement among the analysis, simulation and
visualization approaches, thereby confirming the effectiveness of
this tripartite strategy for dynamical investigations.

Finally, in Section 7, we conclude with a succinct summary
of the results obtained and their importance in this and related
investigations. Moreover, we briefly outline our plans for future
studies inspired by our work here—directed mainly at useful
alternative reduced models and extensions to higher dimensions
and generalization of the systems considered.

2. Newtonian model

First, we derive the equations of motion for a vertically tapped
column of particles using Newtonian and Hamiltonian principles
assuming that the particle–particle and particle–floor interaction
forces are of a modified simplified Walton–Braun (W–B) type
(cf. [5,6,12,16,36]). A simplified type of W–B model is employed
to avoid the extra calculations associated with the initiation of
interactions in progress at any given time. It should be noted
that the modification does not alter the particle (mass center)
dynamics, because both models yield precisely the same velocities
before and after contact (related to the coefficient of restitution).

To be precise, we consider a vertical configuration ofN particles
pi, 1 ≤ i ≤ N , stacked one above the other starting with p1, under
the action of gravity – with constant gravitational acceleration
g – and interacting inelastically (according to the modified W–B
model) with neighboring particles and the rigid bottom. The
bottom (floor) of the stack, denoted as y0 and initially at zero,
moves so as to simulate a periodic nearly impulsive force applied
vertically to the floor. The floor and particle centers are located,
respectively, at the points

0 ≤ y0(t) < y1 < · · · < yN (1)

in I := {y : 0 ≤ y}, and we assume that the particles have masses
and radiim1, r1, . . . ,mN , rN , respectively.

We assume that y0(t) is a periodic function of period T > 0
represented as

y0(t) :=


a sinωt, 0 ≤ t ≤ π/ω
0, π/ω ≤ t ≤ T (2)

for 0 ≤ t ≤ T , where π/ω ≪ T , and the amplitude a is
small and positive. The derivative of y0 with respect to t , ẏ0, is the
discontinuous function

ẏ0(t) :=


aω cosωt, 0 ≤ t ≤ π/ω
0, π/ω ≤ t ≤ T .

(3)
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