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h i g h l i g h t s

• We study correlations in barrier billiards at quadratic irrational frequencies.
• The autocorrelation function (ACF) may display self-similar or chaotic behaviour.
• We calculate the asymptotic height & location of peaks in the ACF for the half barrier.
• Chaotic behaviour of the ACF is shown to occur for more general barriers.
• We show the presence of invariant sets representative of the underlying dynamics.
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a b s t r a c t

We present an analysis of autocorrelation functions in symmetric barrier billiards using a renormalisa-
tion approach for quadratic irrational trajectories. Depending on the nature of the barrier, this leads to
either self-similar or chaotic behaviour. In the self-similar case we give an analysis of the half barrier and
present a detailed calculation of the locations, asymptotic heights and signs of the main peaks in the au-
tocorrelation function. Then we consider arbitrary barriers, illustrating that typically these give rise to
chaotic correlations of the autocorrelation function which we further represent by showing the invariant
sets associated with these correlations. Our main ingredient here is a functional recurrence which has
been previously derived and used in work on the Harper equation, strange non-chaotic attractors and a
quasi-periodically forced two-level system.

© 2013 Elsevier B.V. All rights reserved.

1. Introduction

Barrier billiards are a class of dynamical systemwith autocorre-
lation functionswhich have been shown to possess self-similar be-
haviour. The topic was first motivated by Wiersig [1] who showed
that the system could be reduced to a skew-product evolution
equation based on the sign of the phase space variable. The key
result of Wiersig was that phase space functions for this system
exhibit singular continuous spectra. This work also provided evi-
dence that the associated autocorrelation function never decays to
0 or returns to 1.

This result was explored in [2] and it was discovered that for the
goldenmean frequency, in the case of the so-called half barrier, the
autocorrelation function (ACF) has self similar form at Fibonacci
times. It was shown that the ACF has peaks of magnitude 1−1/

√
5

at every third Fibonacci number time, whereas it is zero at all other
such times. As in previous studies relating to the birth and ACFs of
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strange nonchaotic attractors [3–6] in addition to analysis of self-
similar fluctuations of localised eigenstates of the Harper equation
[7–9], key to this analysis is the functional recurrence

Qn(x) = Qn−1(−ωx)Qn−2(ω
2x + ω). (1.1)

The limitation of this work is that it only deals with the golden
mean frequency case, and the purpose of this article is to widen
these results to a more general class of quadratic irrational fre-
quencies, namely those of the form

ω =

√
m2 + 4 − m

2
. (1.2)

These are the numbers whose continued fraction representation is
[m,m, . . .].

The nature of this generalisation is similar to work completed
by the second author and his colleague on correlation properties
of a quasi-periodically forced two-level system in [10]. This paper
built upon the theory previously developed in [11], which focused
on the golden mean forcing frequency, and extended the results
to quadratic irrationals of this form. The derived functional recur-
rence in the golden mean case is the additive version of (1.1), and
we find that the same is true in the quadratic irrational case. It is
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shown in [10] that for a particular choice of modulation function,
this two-level system has an ACF with peaks of magnitude 1 − 1/
√
m2 + 4. Somewhat surprisingly it was discovered that there is a

dichotomy between the cases m odd, and m even with regard to
when these peaks occur.

Similarly, the strong coupling fixed point of theHarper equation
and the generalised Harper equation have both been considered
for quadratic irrationals of this form [12,13]. In [7] while working
with the golden mean flux the authors discover a renormalisation
strange set which they name ‘‘the orchid’’; in [13] such a set is
produced for each value of m giving rise to a ‘‘garden of orchids’’
(this point will be expanded upon in the conclusion).

In [14] we generalised our study of the barrier billiard problem
for the golden mean frequency to arbitrary barriers, and showed
that if the height of the barrier is chosen outside the field Q(ω)
the correlations at successive Fibonacci numbers are chaotic. The
chaoticity of the time series of correlations at Fibonacci times was
confirmed by the calculation of a positive largest Lyapunov expo-
nent using Rosenstein’s method [15]. Furthermore, using the well
known embedding theorem of Takens [16] we reconstructed an
embedding of the dynamics in three dimensional space, revealing
the presence of an invariant set which we may call ‘‘the star’’.

In Section 2 we briefly summarise the equations of motion and
derive the functional recurrence which plays the same role as (1.1)
for quadratic irrationals. We see that (as expected) it is the mul-
tiplicative version of the recurrence found in [10]. Section 3 gives
the definition of a map F whose periodic orbits correspond to dis-
continuities of our renormalised functions Qn, and using symbolic
dynamics we further deduce information about the period of Qn
based on initial discontinuity data. We summarise results from the
golden mean frequency case studied in [2] which carry over to our
study of quadratic irrational frequencies. In Section 4 we find nec-
essary conditions for Qn to be periodic and give a crucial formula
for the discontinuity location sets. In Sections 5 and 6 we extend
the work on the half barrier for the golden mean frequency cov-
ered in [2] to our class of quadratic irrational frequencies.

It is shown for the half-barrier that peaks of magnitude 1 −

1/
√
m2 + 4 occur in the ACF, and that the location of these peaks is

determined by the parity of m. Furthermore there is a further dis-
tinction between the cases ofm ≡ 0 (mod 4) andm ≡ 2 (mod 4);
in the former the ACF only displays positive peaks meaning that
there is strict correlation whereas in the latter these peaks alter-
nate in sign which indicates ‘‘anticorrelation’’ which is also seen in
the case ofm odd.

Finally, in Section 7 we extend our previous work on chaotic
correlations in barrier billiards at the golden mean frequency [14]
to examples when the frequency is taken from this class of
quadratic irrationals. We numerically approximate the autocor-
relation function for the system at characteristic times and for
each frequency studied we show the existence of invariant sets on
which the correlations lie.

2. Derivation of the relevant equations and functional recur-
rence

To begin this section we summarise the derivation of the equa-
tions of motion as originally shown in [1].

The problemof symmetric barrier billiards relates to themotion
of a point unit mass moving at constant velocity in the rectangu-
lar chamber [−1, 1] × [0, 1]. The particle is experiencing elastic
collisions with the boundary of this chamber according to the law
the angle of incidence is equal to the angle of reflection (we ig-
nore trajectories which hit corners). A vertical barrier is placed in
the middle of this chamber. It is clear that the evolution of (|x|, y)
is simply the integrable evolution of the billiard in [0, 1] × [0, 1]
which can be written in terms of action-angle variables (θx, θy).

Fig. 1. A symmetric barrier billiard and its corresponding barrier function B(y).

To convert to x–y coordinates we define x = f (θx), y = f (θy)
where f is the tent map

f (θ) =


2θ, θ ∈ [0, 1/2]
2(1 − θ), θ ∈ [1/2, 1]. (2.1)

Note that f is invertible if we adopt the understanding that θ ∈

[0, 1/2] corresponds to positive velocity.
The nature of the barrier is determined by a barrier function

B(y) : [0, 1] → {−1, 1} which takes the value 1 if the barrier is
present at y and −1 elsewhere. We ignore trajectories which hit
endpoints of the pieces of the barrier. Fig. 1 shows a schematic of
the system and its associated barrier function.

Defining
x(t) = s(t)|x(t)|, (2.2)
where s(t) is the sign of x at time t , the question of understanding
the systemboils down to understanding the evolution of s. The sign
s can only change sign when x(t) = 0. Hence taking a stroboscopic
sample x = 0 we repeatedly evaluate s(t) just before the particle
strikes the barrier. We define yn be the value of y at time step n
(the successive times when x = 0), and θn to be the corresponding
value of θy.

If the barrier is absent at yn then the sign of x will change,
otherwise it will remain the same.

In summary we have reduced the problem of understanding
symmetric barrier billiards to that of understanding the skew-
product system
θn+1 = θn + ω (mod 1), (2.3)

sn+1 = Φ(θn)sn. (2.4)
We see that the solution of the system is given by
θn = θ0 + nω (mod 1), (2.5)

sn = s0
n−1
k=0

Φ(θ0 + kω). (2.6)

If ω is rational with then it is clear that sn is periodic and we have a
complete understanding of the dynamics. However we can gather
no such information if ω is irrational and so we resort to analysing
the autocorrelation function (ACF) defined as

C(t) = ⟨snsn+t⟩ = lim
N→∞

1
N

N
n=1

snsn+t . (2.7)

Using the same approach as in [3,2] we now use the ergodicity in
θ to convert to a phase average:

C(t) =

 1

0
St(θ)dθ,

where

St(θ) =

t−1
k=0

Φ(θ + kω), t ≥ 1, S0(θ) = 1. (2.8)

Now we restrict our attention to quadratic irrational frequencies
of the form.

ω =

√
m2 + 4 − m

2
. (2.9)
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