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• An equivalence result between the Filippov and Aizerman–Pyatnitskii (AP) extensions.
• The reformulation of the AP-extension as a Complementarity System (CS).
• A theoretically sound and practically useful numerical simulation method.
• A time-integration method for the resulting CS with sliding motions.
• Illustration of the interest by an analysis of three synthetic networks.
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a b s t r a c t

Gene regulatory networks control the response of living cells to changes in their environment. A class of
piecewise-linear (PWL) models, which capture the switch-like interactions between genes by means of
step functions, has been found useful for describing the dynamics of gene regulatory networks. The step
functions lead to discontinuities in the right-hand side of the differential equations. This has motivated
extensions of the PWL models based on differential inclusions and Filippov solutions, whose analysis
requires sophisticated numerical tools. We present a method for the numerical analysis of one proposed
extension, called Aizerman–Pyatnitskii (AP)-extension, by reformulating the PWL models as a mixed
complementarity system (MCS). This allows the application of powerful methods developed for this class
of nonsmooth dynamical systems, in particular those implemented in the Siconos platform. We also
show that under a set of reasonable biological assumptions, putting constraints on the right-hand side of
the PWL models, AP-extensions and classical Filippov (F)-extensions are equivalent. This means that the
proposed numerical method is valid for a range of different solution concepts. We illustrate the practical
interest of our approach through the numerical analysis of three well-known networks developed in the
field of synthetic biology.

© 2013 Elsevier B.V. All rights reserved.

1. Introduction

When confronted with changing environmental conditions,
living systems have a remarkable capacity to rapidly adapt their
functioning. For instance, the response of a bacterial cell to the
depletion of an essential nutrient leads to the upregulation and
downregulation of the expression of up to several hundreds of
genes [1]. The genes encode enzymes, transcription regulators,
membrane transporters and other macromolecules playing a role
in cellular processes. The control of the adjustment of gene
expression levels is achieved by so-called gene regulatory networks,
consisting of genes, RNAs, proteins, and their mutual regulatory
interactions.
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In order to understand how a particular network structure
brings about observed changes in gene expression, mathematical
models in combination with computer simulation are increasingly
used, especially in the emerging field of systems biology [2]. The
modeling of gene regulatory networks also plays a prominent role
in synthetic biology, which aims at designing a network structure
capable of producing a desired gene expression pattern, for
instance a robust oscillation or an externally controlled switch [3].
The networks may be constructed de novo or obtained by rewiring
a natural regulatory network.

A variety of formalisms are available for modeling gene reg-
ulatory networks [4,5]. For many purposes, approximate mod-
els based on simplifications of classical kinetic models have been
proven useful [6–8]. First, the approximate models are easier to
calibrate against experimental data, due to the fact that they re-
duce the number of parameters and the complexity of the rate
equations. This may help relieve what is currently a bottleneck for
modeling in systems biology, namely obtaining reliable estimates
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of parameter values. Second, the simplified mathematical form of
themodelsmakes them easier to analyze. Among other things, this
makes it possible to single out the precise role of specific subnet-
works [9,10] and to analyze the feasibility of control schemes [11].

In this paper we look at one particular class of approximate
models of gene regulatory networks, so-called piecewise-linear
(PWL) models [12]. The PWL models are systems of coupled differ-
ential equations in which the variables denote concentrations of
geneproducts, typically proteins. The rate of change of a concentra-
tion at a particular time-point may be regulated by other proteins
through direct or indirect interactions. The PWL models capture
these regulatory effects by means of step functions that change
their value in a switch-like manner at threshold concentrations of
the regulatory proteins. The step functions are approximations of
the sigmoidal response functions often found in gene regulation.

PWL models with step functions have favorable mathematical
properties, which allows for the analysis of steady states, limit
cycles, and their stability [13–16]. The use of step functions,
however, leads to discontinuities in the right-hand side of the
differential equations, due to the abrupt changes of the value of a
step function at its threshold. These discontinuities are sometimes
ignored, which is potentially dangerous as it may cause steady
states and other important dynamical properties of the system
to be missed. In order to deal with the discontinuities, several
authors have proposed the use of differential inclusions and
Filippov solutions [17–19]. These proposals to extend PWLmodels
to differential inclusions differ in subtle but nontrivial ways, giving
rise to systems with nonequivalent dynamics [19,20].

Currently, only few computational tools are available to
support the analysis of the differential inclusions obtained from
Filippov extensions of PWL models. Genetic Network Analyzer
(GNA) provides a qualitative analysis of PWL models of gene
regulatory networks (e.g., [21,22]). However, the analysis is
based on hyperrectangular overapproximations of the differential
inclusions proposed in [17], and it is currently not clear to which
extent this introduces artifacts in the analysis. Moreover, the
predictions obtained from this analysis are purely qualitative,
describing possible transitions between state-space regions rather
than giving numerical solutions. Alternatively, an algorithm based
on the use of steep sigmoidal response functions in combination
with singular perturbation theory has been presented [23,24].

The aim of this paper is to propose a theoretically sound and
practically useful method for the numerical simulation of gene
regulatory networks described by PWL models. We notably show
that the Aizerman & Pyatnitskii extension (see [17, Definition
c, page 55] or [25]) of PWL models can be reformulated in the
framework of complementarity systems or differential variational
inequalities [26–28]. The Aizerman & Pyatnitskii extension has
been introduced in the context of PWL models of gene regulatory
networks in [19,20], where it is shown that it leads to a more
restrictive extension than the standard Filippov extension. The
reformulation as a complementarity system allows us to employ
the rich store of numerical methods available for these and
other classes of discontinuous systems [26,29]. Moreover, we
show that under two reasonable biological assumptions, posing
constraints on the admissible network structures, the different
extensions of PWL models that have been proposed, as well as the
hyperrectangular overapproximation in [22], are equivalent. This
means that the numerical simulation approach developed in this
paper is valid for a range of different solution concepts for PWL
models of gene regulatory networks.

We illustrate the interest of our numerical simulation approach
by means of the analysis of three synthetic networks published
in the literature: the repressilator [30], an oscillator with positive
feedback [31], and the IRMA network [32]. We develop PWL
models of these networks, either from scratch or by adapting

existing ODE models, and numerically simulate the dynamic
response of these networks to external stimuli. The simulations are
shown to reproduce known qualitative features of these networks,
notably the capability to generate (damped) oscillations for the
first two networks, and a switch-on/switch-off response after a
change in the growth medium for the third. We believe these
examples demonstrate that the numerical simulation approach
developed in this paper provides a useful extension of the toolbox
of modelers of gene regulatory networks.

2. PWL models of gene regulatory networks

2.1. Definition of PWL models

The dynamics of genetic regulatory networks can be described
by piecewise-linear (PWL) differential equation models using step
functions to account for regulatory interactions [12,33,34]. In this
section we briefly summarize the PWL modeling framework.

We denote by x = (x1, . . . , xn)T ∈ Ω a vector of cellular
protein or RNA concentrations, where Ω ⊂ Rn

+
is a bounded n-

dimensional hyperrectangular subset of Rn
+
. For each concentra-

tion variable xi, i ∈ {1, . . . , n}, we distinguish a set of constant,
strictly positive threshold concentrations {θ1

i , . . . , θ
pi
i }, pi > 0.

At its thresholds a protein may affect the expression of genes en-
coding other proteins or the expression of its own gene. We call
Θ =


i∈{1,...,n},k∈{1,...,pi}

{x ∈ Ω | xi = θ k
i } the subset of Ω defined

by the threshold hyperplanes.

Definition 1 (PWL Model). A PWL model of a gene regulatory
network is defined by a set of coupled differential equations

ẋi = fi(x) = −γi xi + bi(x)

= −γi xi +

l∈Li

κ l
i b

l
i(x), i ∈ {1, . . . , n}, (1)

where κ l
i and γi are positive synthesis and degradation constants,

respectively, Li ⊂ N are sets of indices of regulation terms, and
bli : Ω \ Θ → {0, 1} are so-called regulation functions.

Intuitively, (1) defines the rate of change of each concentration
xi as the difference of the rate of synthesis (the second term in
the right-hand side) and the rate of degradation (the first term).
The synthesis term depends on the concentrations of regulatory
proteins through the regulation functions, which account for the
interactions between the genes in the network. Degradation is
described by a first-order term including contributions of growth
dilution and protein degradation. While this is sufficient for the
examples treated in this paper, the degradation term in (1) can be
easily extended to include proteolytic regulators.

Each regulation function bli(·) is defined in terms of step
functions

s+(xj, θ k
j ) =


1 if xj > θ k

j
0 if xj < θ k

j
and

s−(xj, θ k
j ) =


0 if xj > θ k

j
1 if xj < θ k

j ,
(2)

where xj is a concentration variable, j ∈ {1, . . . , n}, and θ k
j a

threshold for xj, k ∈ {1, . . . , pi}. Notice that s−(xj, θ k
j ) = 1 −

s+(xj, θ k
j ). The step functions capture the switch-like character

of gene regulation by transcription factors and other proteins.
The regulation functions are algebraic equivalents of discrete
Boolean functions expressing the combinatorial logic of gene
regulation [35].
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