
Physica D ( ) –

Contents lists available at SciVerse ScienceDirect

Physica D

journal homepage: www.elsevier.com/locate/physd

Nonlocal interactions by repulsive–attractive potentials: Radial ins/stability
D. Balagué a, J.A. Carrillo b,∗, T. Laurent c, G. Raoul d
a Departament de Matemàtiques, Universitat Autònoma de Barcelona, E-08193 Bellaterra, Spain
b Department of Mathematics, Imperial College London, London SW7 2AZ, UK
c Department of Mathematics, University of California - Riverside, Riverside, CA 92521, USA
d Centre d’Ecologie Fonctionnelle et Evolutive, UMR 5175, CNRS, 1919 Route de Mende, 34293 Montpellier Cedex 5, France

a r t i c l e i n f o

Article history:
Available online xxxx

Keywords:
Repulsive–attractive potentials
Spherical shells
Instability conditions
Radial stability

a b s t r a c t

We investigate nonlocal interaction equations with repulsive–attractive radial potentials. Such equations
describe the evolution of a continuum density of particles in which they repulse (resp. attract) each other
in the short (resp. long) range. We prove that under some conditions on the potential, radially symmetric
solutions converge exponentially fast in some transport distance toward a spherical shell stationary state.
Otherwisewe prove that it is not possible for a radially symmetric solution to convergeweakly toward the
spherical shell stationary state. We also investigate under which condition it is possible for a non-radially
symmetric solution to converge toward a singular stationary state supported on a general hypersurface.
Finally we provide a detailed analysis of the specific case of the repulsive–attractive power law potential
as well as numerical results.

© 2012 Elsevier B.V. All rights reserved.

1. Introduction

Nonlocal interaction equations are continuummodels for large
systems of particles where every single particle can interact not
only with its immediate neighbors but also with particles far away.
These equations have a wide range of applications. In biology they
are used tomodel the collective behavior of a large number of indi-
viduals, such as a swarm of insects, a flock of birds, a school of fish
or a colony of bacteria [1–17]. In these models individuals sense
each other at a distance, either directly by sound, sight or smell, or
indirectly via chemicals, vibrations, or other signals. Nonlocal in-
teraction equations also arise in various contexts in physics. They
are used in models describing the evolution of vortex densities in
superconductors [18–26]. They also appear in the modeling of dy-
namics of agglomerating particles in two dimensions (with loose
links to the one-dimensional sticky particle system) [27]. They
also appear in simplified inelastic interaction models for granular
media [28–31]. Going back to biology, nonlocal interaction equa-
tions arise also in the modeling of the orientational distribution of
F-actin filaments in cells [32–34].

In their simplest form, nonlocal interaction equations can be
written as
∂µ

∂t
+ div(µv) = 0, v = −∇W ∗ µ (1)
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where µ(t) = µt is the probability measure of particles at time
t,W : RN

−→ R is the interaction potential and v(t, x) is the ve-
locity of the particles at time t and at location x ∈ RN . We will
always assume that the interaction potential W (x) = k(|x|) is ra-
dial and C2-or C3-smooth away from the origin, depending on the
results. Typically the potentials we will consider have a singularity
(not C2-smooth) at the origin.

When the potential W is purely attractive, i.e. W is a radially
symmetric increasing function, then the density of particles col-
lapse on itself and converge to a Dirac Delta function located at
the center of mass of the density. This Dirac Delta function is the
unique stable steady state and it is a global attractor [35]. The col-
lapse toward the Dirac Delta function can take place in finite time
if the interaction potential is singular enough at the origin and sev-
eral works have been recently devoted to the understanding of
these singular measure solutions [36,37,35,38].

In biological applications however, it is often the case that in-
dividuals attract each other in the long range in order to remain
in a cohesive group, but repulse each other in the short range in
order to avoid collision [39,40]. This lead to the choice of a radially
symmetric potentialW which is first decreasing then increasing as
a function of the radius. We refer to these type of potentials as re-
pulsive–attractive potentials. Compared with the purely attracting
case where solutions always converge to a single Delta function,
nonlocal interaction equations with repulsive–attractive poten-
tials lead to solutions converging to possibly complex steady states.
As such, nonlocal interaction equations with repulsive–attractive
potentials can be considered as a minimal model for pattern for-
mation in large groups of individuals. They also arise in material

0167-2789/$ – see front matter© 2012 Elsevier B.V. All rights reserved.
doi:10.1016/j.physd.2012.10.002

http://dx.doi.org/10.1016/j.physd.2012.10.002
http://www.elsevier.com/locate/physd
http://www.elsevier.com/locate/physd
mailto:dbalague@mat.uab.cat
mailto:carrillo@mat.uab.es
mailto:carrillo@imperial.ac.uk
mailto:laurent@math.ucr.edu
mailto:raoul@cefe.cnrs.fr
http://dx.doi.org/10.1016/j.physd.2012.10.002


2 D. Balagué et al. / Physica D ( ) –

sciences [41–45] where particles, nano-particles ormolecules self-
assemble according to pairwise interactions generated by a repul-
sive–attractive potential.

Whereas nonlocal interaction equations with purely attractive
potential have been intensively studied there are still relatively few
rigorous results about nonlocal interaction equations with repul-
sive–attractive potential. The 1D case has been studied in a series
of works [46–48]. The authors have shown that the behavior of the
solution depends highly on the regularity of the interaction po-
tential: for regular interaction, the solution converges to a sum of
Diracmasses, whereas for singular repulsive potential, the solution
remains uniformly bounded. They also showed that combining a
singular repulsive with a smooth attractive potential leads to in-
tegrable stationary states. Pattern formation in multi-dimensions
have recently been studied in [49,50]. In these two works, the au-
thors perform a numerical study of the finite particle version of
(1) and show that a repulsive–attractive potential can lead to the
emergence of surprisingly complex patterns. To study these pat-
terns they plug in (1) an ansatz which is a distribution supported
on a surface. This give rise to an evolution equation for the surface.
They then perform a linear stability analysis around the uniform
distribution on the sphere and derive simple conditions on the
potential which classify the different instabilities. The various in-
stabilitymodes dictate towardwhich pattern the solutionwill con-
verge. They also check numerically that what is true for the surface
evolution equation also holds for the continuummodel (1). In other
recent works [51,52] the specific case where the repulsive part
of the potential is the Newtonian potential is analyzed showing
the existence of radially compactly supported integrable stationary
states. They also study their nonlinear stability for radial solutions.

In this paper we focus primarily on proving rigorous results
about the convergence of radially symmetric solutions toward
spherical shell stationary states in multi-dimensions.

Definition 1 (Spherical Shell). The spherical shell of radius R, de-
noted δR, is the probabilitymeasure which is uniformly distributed
on the sphere ∂B(0, R) = {x ∈ RN

: |x| = R}.

Given a repulsive–attractive radial potential whose attractive
force does not decay too fast at infinity, there always exists an
R > 0 so that the spherical shell of radius R is a stationary state as
it will be remarked below. One needs then to address the question
of whether or not this spherical shell is stable. It is classical, see
[53,29,54,55], that the Eq. (1) is a gradient flow of the interaction
energy

E[µ] =
1
2


RN


RN

W (x − y)dµ(x)dµ(y) (2)

with respect to the euclidean Wasserstein distance. Thus, stable
steady states of (1) are expected to be local minimizers of the
interaction energy. Simple energetic arguments will show that in
order for the spherical shell of radius R to be a local minimum of
the interaction energy, it is necessary that the radial potential W
satisfies:

(C0) Repulsive–Attractive Balance: ω(R, R) = 0,
(C1) Fattening Stability: ∂1ω(R, R) ≤ 0,
(C2) Shifting Stability: ∂1ω(R, R)+ ∂2ω(R, R) ≤ 0,

where the function ω : R2
+

−→ R is defined by

ω(r, η) = −
1
σN


∂B(0,1)

∇W (re1 − ηy) · e1 dσ(y), (3)

σN is the hypersurface area of the unit sphere in RN , e1 is the
first vector of the canonical basis of RN , dσ denotes the volume
element of themanifoldwhere the integral is performed andR2

+
=

(0,+∞) × (0,+∞). Condition (C0) simply guarantees that the

spherical shell δR is a critical point of the interaction energy. We
will see that if condition (C1) is not satisfied then it is energetically
favorable to split the spherical shell into two spherical shells.
Heuristically this indicate that the density of particles, rather than
remaining on the sphere, is going to expand and occupy a domain
inRN of positive Lebesguemeasure. If condition (C1) is not satisfied
we will therefore say that the ‘‘fattening instability’’ holds. It can
be easily checked that if ω(R, R) = 0, then ∂1ω(R, R) is simply
the value of the divergence of the velocity field on the sphere of
radius R. So the fattening instability corresponds to an expanding
velocity field on the support of the steady state. We will also see
that if condition (C2) is not satisfied it is energetically favorable
to increase or decrease the radius of the spherical shell. This
instability will be referred as the ‘‘shift instability’’.

We now outline the structure of the paper and describe the
main results. In the preliminary section, Section 2, we derive
(C0)–(C2) from an energetic point of view and we show that
they correspond to avoiding the fattening and shift instability. We
also study the regularity of the kernel ω defined by (3). A good
understanding of the regularity of ω will be necessary for later
sections. Some technical results of this regularity analysis need
nontrivial aspects of differential geometry and are relegated to an
Appendix for readiness. We also remind the reader of previous re-
sults from [56,57] about well posedness of (1) in Lp(RN) and set up
the overall notation.

Section 3 is devoted to a detailed study of the fattening insta-
bility, both in the radially symmetric case and in the non-radially
symmetric case. We first show that if condition (C1) is not satis-
fied then it is not possible for a radially symmetric Lp-solution to
converge weakly-∗ as measures toward a spherical shell station-
ary state. We then investigate singular stationary states supported
on hypersurfaces which are not necessarily spheres. Such steady
states have been observed in numerical simulations [49,50]. We
show that if the divergence of the velocity field generated by such
stationary state is positive everywhere on their support, then it is
not possible for an Lp-solution to converge toward the stationary
state in the sense of the topology defined by d∞. Here d∞ stands
for the infinity-Wasserstein distance on the space of probability
measures (see next section for a definition). We also show that
if the repulsive–attractive potential W is singular enough at the
origin, for example W (x) ∼ −|x|b/b as |x| → 0 with b ≤ 3 − N ,
then the potential is so repulsive in the short range that solutions
cannot concentrate on an hypersurface, and this is independent of
how attractive is the potential in the long range. To bemore precise
we show that for potentials with such a strong repulsive singular-
ity at the origin, Lp solutions cannot converge with respect to the
d∞-topology toward singular steady states supported onhypersur-
faces.

Whereas Section 3 is devoted to instability results, Section 4
is devoted to stability results. We show that if (C0)–(C2) hold
with strict inequalities, then a radially symmetric solution of (1)
which starts close enough to the spherical shell in the d∞ topology
will converge exponentially fast toward it. Under additional
assumptions on the potential we can also prove convergence with
respect to the dα topology, α ∈ [1,+∞). In order for the stability
results of Section 4 to hold a certain amount of regularity on the
solutions is necessary. Unfortunately weak Lp-solutions do not
have this amount of regularity. This is why in Section 5 we prove
well posedness of classical C1-solutions. This covers a gap in the
existing literature which mostly considers weak solutions. The
results of Section 4 are true for this class of classical C1-solutions.
The aim of Section 6 is to show examples of how to apply the
general instability and stability theory in the case of power-law
repulsive–attractive potentials:

W (x) =
|x|a

a
−

|x|b

b
2 − N < b < a. (4)
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