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a b s t r a c t

We consider the aggregation equation with an attractive–repulsive force law. Recent studies
(Kolokolnikov et al. (2011) [22]; von Brecht et al. (2012) [23]; Balague et al. (2013) [15]) have
demonstrated that this system exhibits a very rich solution structure, including steady states consisting
of rings, spots, annuli, N-fold symmetries, soccer-ball patterns etc. We show that many of these patterns
can be understood as singular perturbations off lower-dimensional equilibrium states. For example, an
annulus is a bifurcation from a ring; soccer-ball patterns bifurcate off solutions that consist of delta-
point concentrations. We apply asymptotic methods to classify the form and stability of many of these
patterns. To characterize spot solutions, a class of ‘‘semi-linear’’ aggregation problems is derived, where
the repulsion is described by a nonlinear term and the attraction is linear but non-symmetric. For a special
class of perturbations that consists of a Newtonian repulsion, the spot shape is shown to be an ellipse
whose precise dimensions are determined via a complex variablemethod. For annular shapes, their width
and radial density profile are described using perturbation techniques.

© 2012 Elsevier B.V. All rights reserved.

1. Introduction

Collective group behaviour is a fascinating natural phenomenon
that is observed at all levels of the animal kingdom, from beautiful
bacterial colonies, insect swarms, fish schools and flocks of birds,
to complex human population patterns. The emergence of very
complex behaviour is often a consequence of individuals following
very simple rules, without any external coordination. In recent
years, many models of group behaviour have been proposed that
involve nonlocal interactions between the species [1–6]. Related
models also arise in other important applications such as self-
assembly of nanoparticles [7,8], theory of granular gases [9],
invasion models [10], chemotaxic motion [11,12], and molecular
dynamics simulations of matter [13].

One of the simplest models of insect swarming was proposed
in [5]. In this model, each individual is represented by a particle
moving in space. Every particle A ‘‘feels’’ every other particle
B through a force whose magnitude F(r) depends only on the
pairwise distance between the two particles and which acts in the
direction from A to B. Each particle then moves in the direction
of the average force acting upon it. These simple assumptions
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lead to an aggregation model for a system of particles located at
{x1, . . . , xN},

d
dt

xk =
1
N
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F
xk − xj

 xk − xjxk − xj
 , k = 1, . . . ,N. (1)

The force law F(r) is assumed to be repulsive at short distances
(i.e. F(r) > 0 for small r) and attractive at large distances (i.e. F(r) <
0 for sufficiently large r). For convenience, we will often use the
notation

d
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1
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, k = 1, . . . ,N, (2)

where f (r) = F(r)/r . The continuum limit N → ∞ of (2) yields
the system [14],

ρt + ∇ · (vρ) = 0; v =


Rd

f (|x − y|) (x − y)dy. (3)

The aggregation model (3) and its discrete analogue (2) have
been intensively studied over the past decade and by now a
vast literature exists on this topic; see for example [15,14,16–
22,5,6,23,24] and references therein. There are also many studies
of related second-order models that incorporate acceleration of
self-propelled particles; see for instance [25–27] and references
therein.

In a series of papers [22–24,15,28], the authors have investi-
gated a very rich solution structure for a family of such attrac-
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Fig. 1. Steady states of (1) with F(r) = min (ar + b, 1 − r), using N = 1000 particles and with a, b as indicated. A snapshot at t = 10, 000 is shown. Integration was
performed using the forward Euler method with stepsize 0.5.

tive–repulsive force laws. A particularly simple solution in two
dimensions consists of a ring, where the particles align themselves
along a circular ring uniformly. Another type of a simple solution
consists of clusters of particles, whereby the equilibrium state con-
sists of K ‘‘holes’’, with each particle belonging to one of such holes.
The stability of cluster solutions in one dimension was character-
ized in [20]; we will extend this analysis to higher dimensions in
Section 2 below.

To illustrate the large variety of possible steady states, consider
the ‘‘piecewise-linear’’ force
F(r) = min (ar + b, 1 − r) , 0 ≤ b ≤ 1. (4)
As shown on Fig. 1, this family generates a rich equilibrium
structure that is very sensitive to the choice of parameters a and
b. Note in particular the presence of ‘‘spot’’ solutions, such as when
(a, b) = (0.8, 0.05); and the annulus solutions such as when
(a, b) = (0.4, 0.15). Such solutions are prevalent in numerical
simulations, and typically bifurcate from simpler ring or cluster
solutions.1 The main goal of this paper is to study these more
complex solutions including annuli, spots, and ‘‘soccer balls’’.

1 In [22], the family F(r) = b + tanh ((1 − r)a) was shown to also generate a
wide variety of steady states, many similar to what is shown in Fig. 1.

Let us now summarize our findings. We start by extending the
work of [20] on point clusters to two and higher dimensions in
Section 2. Such clusters can occur when the repulsion near the
origin is weak, F(0) = 0. On the other hand, when the repulsion
at small distances is small but positive, 0 < F(0) ≪ 1, the
holes ‘‘degenerate’’ into small spots. In Section 3 we derive the
reduced canonical problem (30) that describes the shape of a
single spot. This reduced problemdepends only on two parameters
and is analysed in Section 3. There are two basic steady states
of the reduced problem (30): the simplest steady state consists
of particles along a line; such steady states appear for in Fig. 1
with (a, b) = (0.2, 0.025). A more complex shape is a fully-
two dimensional steady state such as e.g. (a, b) = (0.8, 0.05).
We fully characterize the stability of the former in terms of
Harmonic numbers (see Theorem 3.2). Using the results of [19]
also shows that the steady states are bounded in the continuum
limit. In Section 3.2 we extend the analysis for the case where a
small amount of Newtonian repulsion is added to the kernel. The
resulting spots have a constant density and their shape is an ellipse
whose axes are completely characterized in terms of the original
kernel (see Theorem 3.3 for details).

In Section 4 we turn our attention annular solutions such as in
Fig. 1 with (a, b) = (0.4, 0.15). These arise as singular perturba-
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