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a b s t r a c t

We consider a self-propelled particle system which has been used to describe certain types of collective
motion of animals, such as fish schools and bird flocks. Interactions between particles are specified by
means of a pairwise potential, repulsive at short ranges and attractive at longer ranges. The exponentially
decaying Morse potential is a typical choice, and is known to reproduce certain types of collective
motion observed in nature, particularly aligned flocks and rotating mills. We introduce a class of
interaction potentials, thatwe call Quasi-Morse, forwhich flock and rotatingmills states are also observed
numerically, however in that case the correspondingmacroscopic equations allow for explicit solutions in
terms of special functions, with coefficients that can be obtained numerically without solving the particle
evolution. We compare the obtained solutions with long-time dynamics of the particle systems and find
a close agreement for several types of flock and mill solutions.

© 2013 Elsevier B.V. All rights reserved.

1. Introduction

Emerging behaviors in interacting particle systems have received a lot of attention in research in recent years. Topics range fromdiverse
fields of applications such as animal collective behavior, traffic, crowd dynamics and crystallization. Self-organization in the absence of
leaders has been reported in several species which coordinate their movement (swarming), and several models have been proposed for
their explanation [1–6].

Many of thesemodels are based on zones inwhich someof 3 basic effects are included: short-range repulsion, long-range attraction, and
alignment. These 3-zone basic descriptions have been very popular for modeling fish schools [7–11], starlings [12], or ducks [13,14]. The
mainmodeling issues are if some or all of these effects between agents have to be included and if so, how to incorporate them. Many basic
swarming models rely on averaged spatial distance or orientation interactions while recent biological studies point out the importance of
nearest-neighbor interactions [15] or anisotropic communication [16]. Mathematicians have started in recent years to attack one of the
most striking features of these simple looking models: the diversity of swarming states, also called patterns in the biology community,
their emergence and stability.

The individual level description of these phenomena leads to certain particle systems, called Individual BasedModels (IBMs), with some
common aspects. Typically, the attraction–repulsion is modeled through pairwise effective potentials depending on the distance between
individuals. An asymptotic speed for particles is imposed either by working in the constrained set of a sphere in velocity space [17–19]
or by adding a term of balance between self-propulsion and friction which effectively fixes the speed to a limiting value for large times
[20,21]. In this work, we will not include any alignment mechanism. We refer to [22] for a survey on results related to kinetic modeling in
swarming.

In Section 2 we will review some of these IBMs, and discuss the appearance of two main swarming patterns: mills and flocks. These
patterns are easily observed in particle simulations [21,23] and reported in detail for certain particular potentials, the so-called Morse
potentials. We will give a precise definition of flocks and mills as solutions of the kinetic equation associated to the particle systems.
Finding the spatial shape of flocks and mills has been numerically reported in the literature, but obtaining analytical results on them has
only been done in one dimension for the Morse potential in [24].

In this work, we generalize the strategy in [24] proposing a new interaction potential, that we call Quasi-Morse, to replace the Morse
potential. The Quasi-Morse potential coincides with the Morse potential in one dimension and wewill show that, it is a suitable extension
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of the Morse potential in n = 2, 3. Section 3 introduces Quasi-Morse potentials as fundamental solutions of certain linear PDEs. We
will first show that the Quasi-Morse potentials are biologically relevant in essentially the same parameter range as the Morse potentials.
Second, we make use of their particular structure to show in our main theorem that flock and mill solutions can be expressed as almost
explicit linear combinations of special functions.

Finally, Section 4 is devoted to propose an algorithm to compute the scalar coefficients in the expansion of the flock andmill patterns in
terms of the basis functions associated with the Quasi-Morse PDE operators. The strategy uses ideas of constrained optimizationmethods.
We finally compare the results for flocks in 2D and3Dandmills in 2D to particle simulations showing a good agreement. As a conclusion,we
demonstrate that the proposed Quasi-Morse potentials are very good alternative to Morse potentials as they share many of their features
in the natural parameter range, and at the same time enable explicit computation of the macroscopic density profiles up to numerically
determined constants.

2. Swarming: Models and patterns

We will consider a simple second order model for swarming analyzed in [21] consisting of the attraction–repulsion of N interacting
self-propelled particles located at xi ∈ Rn with velocities vi ∈ Rn in a host medium with friction, with n = 1, 2, 3. Friction is modeled by
Rayleigh’s law and as a result, an asymptotic speed for the individuals is fixed by the compensation of friction and self-propulsion. More
precisely, the time evolution is governed by the equations of motion

dxi
dt

= vi,

dvi
dt

= αvi − βvi|vi|
2
− ∇xi


i≠j

W (xi − xj),
(1)

where W is a pairwise interaction potential and α, β are effective values for propulsion and friction forces, see [20,21,25,26] for more
discussion. The interaction potential W : Rn

× Rn
→ R is assumed to be radially symmetric: W (x) = U(|x|), x ∈ Rn. The typical

asymptotic speed of the individuals is
√
α/β . The Morse potential is defined by taking

U(r) = −CAe−r/lA + CRe−r/lR ,

where CA, CR are the attractive and repulsive strengths, and lA, lR are their respective length scales. We set V (r) = − exp(−r/lA),
C = CR/CA, and l = lR/lA to obtain

U(r) = CA


V (r)− CV

 r
l


.

The choice of this potential is motivated in [21] for being one of the simplest choices of integrable potentials with easily computable
conditions to distinguish the relevant parameters in biological swarms. In fact, it is straightforward to check that in the range C > 1 and
l < 1 the potential U(r) is short-range repulsive and long-range attractive with a unique minimum defining a typical distance between
particles. Moreover, in this regime the sign of the integral of the potential:

U :=


∞

0
W (x) dx = V(1 − Cln) with V :=


∞

0
V (r)rn−1 dr < 0, (2)

gives a criterion to distinguish between the so-called H-stable and catastrophic regimes. This condition reads as Cln − 1 < 0 for the
catastrophic case in any dimension n, see [21,27]. This property of the potential is important since it is related to the typical patterns
emerging in such systems, as classified in [21].

Flocks, where particles tend to form groups, movingwith the same velocity, andmilling solutions, where rotatory states are formed are
of particular interest and are observed in particle and hydrodynamic simulations [21,28] in n = 2. Actually, they typically emerge in the
large time behavior of the system of particles (1) in the catastrophic regime Cl2 < 1with C > 1 and l < 1. In the same range of parameters,
randomly chosen initial data lead also to other patterns such as double mills and flocks [21,29]. However mills are not observed in the
H-stable regime Cl2 > 1 with C > 1 and l < 1 while flocks do.

Assuming the weak coupling scaling [30–33] in which the range of interaction is kept fixed and the strength of interaction is divided
proportionally between particles, we pass to the rescaled formulation:

dxi
dt

= vi,

dvi
dt

= vi(α − β|vi|
2)−

1
N

∇xi


i≠j

U(|xi − xj|).

This system has a well-defined limit as N → ∞ which can be expressed as a solution of the corresponding mean-field equation:

∂t f + v · ∇xf + F [ρ] · ∇v f + div

α − β|v|2


vf


= 0, (3)

with

ρ(t, x) :=


f (t, x, v)dv.

Here, f (t, x, v) : R×Rn
×Rn

→ R is the phase-space density, andρ(t, x) is the averaged (macroscopic) density. Themean-field interaction
is given by F [ρ] = −∇xW ⋆ ρ.
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