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a b s t r a c t

In this paper we consider the spectral and nonlinear stabilities of periodic traveling wave solutions
of a generalized Kuramoto–Sivashinsky equation. In particular, we resolve the long-standing question
of nonlinear modulational stability by demonstrating that spectrally stable waves are nonlinearly
stable when subject to small localized (integrable) perturbations. Our analysis is based upon detailed
estimates of the linearized solution operator, which are complicated by the fact that the (necessarily
essential) spectrum of the associated linearization intersects the imaginary axis at the origin. We carry
out a numerical Evans function study of the spectral problem and find bands of spectrally stable
periodic traveling waves, in close agreement with previous numerical studies of Frisch–She–Thual,
Bar–Nepomnyashchy, Chang–Demekhin–Kopelevich, and others carried out by other techniques. We
also compare predictions of the associated Whitham modulation equations, which formally describe
the dynamics of weak large scale perturbations of a periodic wave train, with numerical time evolution
studies, demonstrating their effectiveness at a practical level. For the reader’s convenience, we include
in an appendix the corresponding treatment of the Swift–Hohenberg equation, a nonconservative
counterpart of the generalized Kuramoto–Sivashinsky equation for which the nonlinear stability analysis
is considerably simpler, together with numerical Evans function analyses extending spectral stability
analyses of Mielke and Schneider.

© 2013 Elsevier B.V. All rights reserved.

1. Introduction

Localized coherent structures such as solitary waves play an
essential role as elementary processes in nonlinear phenomena.
Examples of this are multi-bump solutions in reaction–diffusion
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equations, which are constructed by piecing together well-
separated solitary waves [1], or the limiting case of infinite,
periodic wave trains. A similar situation occurs in nonlinear
dispersivemedia described by aKorteweg–deVries (KdV) equation
where exactmulti-bump and periodic solutions exist. In this paper,
we consider periodic solutions of an unstable dissipative–dispersive
nonlinear equation, namely a generalized Kuramoto–Sivashinsky
(gKS) equation

ut + γ ∂4x u + ε∂3x u + δ∂2x u + ∂xf (u) = 0, γ , δ > 0, (1.1)
where f (u) is an appropriate nonlinearity and ε, γ ∈ R are
arbitrary constants with γ > 0. In the case f (u) =

u2
2 , Eq. (1.1)
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is a canonical model for pattern formation that has been used to
describe, variously, plasma instabilities, flame front propagation,
turbulence in reaction–diffusion systems and nonlinear waves in
fluid mechanics [2–7].

Eq. (1.1) may be derived formally either from shallow water
equations [8] or from the full Navier–Stokes system [9] for
0 < γ = δ ≪ 1. Here δ measures the deviation of the
Reynolds number from the critical Reynolds number above which
large scale weak perturbations are spectrally unstable. For this
latter application, what we have in mind is the description of
chaotic motions in thin film flows down an incline [6]. Indeed,
periodic traveling waves are some of the few simple solutions
in the attractor for the classic (ε = 0) Kuramoto–Sivashinsky
equation, a generic equation for chaotic dynamics, and there is
now a substantial amount of literature on these solutions (and
their bifurcations, in particular period doubling cascades) and
their stability; see [10,11,4,6]. As ε increases, the set of stable
periodic waves, and presumably also their basin of attraction
appears (numerically) to enlarge [12,13], until, in the |(γ , δ)| → 0
limit, they and other approximate superpositions of solitary waves
appear to dominate asymptotic behavior [6,7,14,15].

Since δ > 0 it is easily seen via Fourier analysis that all
constant solutions of (1.1) are unstable, from which it follows that
all asymptotically constant solutions (such as the solitary waves)
are also unstable. Nevertheless, one can still construct multi-bump
solutions to (gKS) on asymptotically large time O(δ−1) by gluing
together solitary waves, provided that the distance between them
is not too large [7]. One possible interpretation of this is that
there exist stable periodic wave trains nearby the solitary wave.
Indeed, it has been known, almost since the introduction of the
classical Kuramoto–Sivashinsky equation (1.1) (ε = 0) in 1975,
that there exists a spectrally stable band of periodic solutions in
parameter space; see for example the numerical studies in [16,10].
These stable periodic wave trains may be heuristically viewed as
a superposition of infinitely many well separated solitary waves.
In [17], the existence of such a band of stable periodic traveling
waves was justified analytically for the Eq. (1.1) with periodic
boundary conditions in the singular KdV limit |(γ , δ)| → 0.

Although numerical time-evolution experiments suggest that
these spectrally stable waves are nonlinearly stable as well
(see [6]), up to now this conjecture had not been rigorously ver-
ified, and indeed the standard techniques developed in, e.g., [18–20]
for the study of stability of periodic waves do not appear to apply.
In this paper, utilizing heavily the recent infusion of new tools in
[21,22,14,23,15] in the context of general conservation laws and
the St. Venant (shallowwater) equations, we prove the result, pre-
viously announced in [24], that spectral modulational stability of pe-
riodic solutions of (1.1), defined in the standard sense, implies linear
and nonlinear modulational stability to small localized (integrable)
perturbations; that is, a localized perturbation of a periodic travel-
ing wave converges to a periodic traveling wave that is modulated
in phase. The first such nonlinear result for any version of (1.1), that
is, for any γ , δ > 0, this closes in particular the 35-year old open
question of nonlinear stability of spectrally stable periodic waves
of the classical Kuramoto–Sivashinsky equation (ε = 0) found nu-
merically in [10].

With these improvements in nonlinear theory, we find this also
an opportune moment to make a definitive discussion of the gen-
eralized Kuramoto–Sivashinsky equation (and Swift–Hohenberg
equations) in terms of existence, nonlinear theory, and numeri-
cal spectral stability studies, all three, across all parameters, both
connecting to and greatly generalizing the variety of prior works
[10,11,4,6,25,26,18,12,13]. We thus carry out also a numerical
analysis of the spectrum in order to check the spectral assumptions
made in our main theorem.

Notice that translational invariance of the governing equations
implies that the origin is always an element of the spectrum,

hence that spectral stability can be at best of marginal type;
this is standard for periodic solutions of equations not depending
on the spatial variable x, as pointed out early on by Schneider
and others [18]. Moreover, here, the conservative form of the
equations introduces an additional critical mode beyond the
usual translational one, a circumstance that greatly complicates
both the analytical and numerical stability theory regarding
the periodic wave trains admitted by (1.1). In particular, the
renormalization techniques introduced in [18] and refined in,
e.g., [19,20], until recently the only techniques available to treat
nonlinear modulational stability of general periodic waves,1 do
not appear to apply to situations, as here, involving critical modes
with differing linear group velocities.2 Likewise, bifurcation of these
multiple modes as Floquet number is varied around zero is a
substantially more sensitive problem than bifurcation of a simple
eigenvalue, making the numerical spectral stability problem more
difficult as well.

Our numerical approach is based on complementary tools;
namely Hills method and the Evans function. On the one hand,
we use SpectrUW numerical software [29] based on Hills method,
which is a Galerkin method of approximation, in order to obtain
a good overview of location of the spectrum: the periodic
coefficients and eigenvectors are expanded using Fourier series,
and then a frequency cutoff is used to reduce theproblem to finding
eigenvalues of a finite dimensional matrix. It is known that Hills
method converges faster than any algebraic order [30]; moreover,
in practice, it gives quickly a reliable global qualitative picture.
However, the associated error bounds are of abstract nature, with
coefficients whose size is not a priori guaranteed. Further, near the
critical zone around λ = 0, the resolution of this method is not in
practice sufficient to guess at stability, let alone obtain satisfactory
numerical verification.

Thus, in order to get more reliable pictures near the origin and
guarantee the spectral stability of periodic wave, we use on the
other hand an approach based on the Evans function of Gardner,
computing a winding number to prove that there is or is not
unstable spectrum in the part of the unstable (positive real part)
complex half plane excluding a small neighborhood of the origin,
then using Cauchy’s integral formula to determine the Taylor
expansions of the spectral curves passing through the origin. This
method, though cumbersome for approximating global spectrum,
is excellent for excluding the existence of spectra on a given
region, and comes with error bounds that can in a practical sense
be prescribed via the tolerance of the Runge–Kutta 4–5 scheme
used to evaluate the Evans function by solution of an appropriate
ODE; see [31,32,23] for general discussion of convergence of
Evans functionmethods. Furthermore, under generic assumptions,
the numerical protocol introduced in Section 2.1.3 below detects
sideband stability and instability of the underlying periodic wave
train without the need of lengthy spectral perturbation expansion
calculations, thus adding what we believe is a valuable new
method to the numerical toolbox for analyzing the spectral
stability of periodic wave trains. It should be noted that there exist
explicit relationships between Hill’s method and Gardner’s Evans
function; the interested reader is encouraged to consult [30,33]
and references therein.

In order to validate our numerical method, we compare our
results with those known for the Kuramoto–Sivashinsky equation
(ε = 0, f (u) = u2/2) and for the Swift–Hohenberg equation.
We see that we obtain very good agreement with several existing

1 For Ginzburg–Landau type equations in which phase and amplitude can be
approximately decoupled, there have also been used direct Lp → Lq estimates on
the amplitude equations; see [27,28].
2 Defined in Remark 1.2.
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