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h i g h l i g h t s

• We study the evolution of NDE and dynamics of nonlinear disordered lattices (KG/DNLS).
• We used two key quantities: the statistical measures of second moment and kurtosis.
• The numerics show good correspondence to NDE analytics in a wide parameters range.
• We also introduced a modified NDE with long-range exponentially decaying coupling.
• Numerics for above model show even deeper correspondence of KG/DNLS and the NDE.
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a b s t r a c t

Probably yes, since we find a striking similarity in the spatio-temporal evolution of nonlinear diffusion
equations and wave packet spreading in generic nonlinear disordered lattices, including self-similarity
and scaling. We discuss, analyze and compare nonlinear diffusion equations with compact or exponen-
tially decaying interactions, and generalized dependences of the diffusion coefficient on the density. Our
results strongly support applicability to wave packet spreading in disordered nonlinear lattices.

© 2013 Elsevier B.V. All rights reserved.

1. Introduction

The combined impact of disorder and nonlinearity strongly
affects the transport properties of many physical systems leading
to complex behavior contrary to their separate linear counterparts.
The application has great range; particularly relevant are nonlinear
effects in cold atoms [1,2], superconductors [3], and optical
lattices [4–6]. Yet experimental probing of both disordered and
nonlinear media remains limited due to reachable time or size
scales.

Significant achievements towards understanding the interplay
of disorder and nonlinearity have been made in recent theoretical
and numerical studies. A highly challenging problem was the dy-
namics of compact wave packets expanding in a disordered poten-
tial, in the presence of nonlinearity. Themajority of studies focused
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on two paradigmatic models – the discrete nonlinear Schrödinger
(DNLS) and the Klein–Gordon (KG) equations – revealing both de-
struction of an initial packet localization and its resulting subdif-
fusive spreading, however with debate regarding the asymptotic
spreading behaviors [7–14]. Hypotheses of an ultimate slowing-
down [15,16] or eventual blockage of spreading [17,18] have been
recently challenged with evidence in [19], which reported a fi-
nite probability of unlimited packet expansion, even for small non-
linearities. For more details on ongoing controversial debates, we
refer the reader to the recent review [20]. A qualitative theory of
the nonlinear wave evolution in disordered media is based on the
random phase ansatz [12], derives power-law dependences of the
diffusion coefficient on the local densities, and predicts several dis-
tinct regimes of subdiffusion that match numerics [11–14] con-
vincingly. Closely tied to these phenomena is thermal conductivity
in a disordered quartic KG chain, analyzed in [21].

Similar power-law dependences of the diffusion coefficient on
the local density have been extensively studied in the context
of the nonlinear diffusion equation (NDE). The NDE universally
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describes a diverse range of different phenomena, such as heat
transfer, fluid flow or diffusion. It applies to gas flow through
porous media [22,23], groundwater infiltration [24,25], or heat
transfer in plasma [26]. As a key trait, the NDE admits self-similar
solutions (also known as the source-type solution, ZKB solution or
Barenblatt–Pattle solution). It describes the diffusion from a com-
pact initial spot and was first studied by Zel’dovich, Kompaneets,
and Barenblatt [27,28].

The connection between nonlinear disordered spatial wave
equations and NDE was conjectured recently and remains an
open terrain [29,15,30–33]. A particularly challenging question is
whether the NDE self-similar solution is an asymptotic time limit
for the wave packet spreading in nonlinear disordered arrays. If
yes, this will support the expectations that compact wave packets
spread indefinitely, without re-entering Anderson localization.
In this paper, we demonstrate that the NDE captures essential
features of energy/norm diffusion in nonlinear disordered lattices.
At present, we still lack a rigorous derivation of the NDE from the
Hamiltonian equations for nonlinear disordered chains. Here we
show that at a sufficiently large time the properties of the NDE self-
similar solution reasonably approximate those of the energy/norm
density distribution of nonlinear waves; manifesting in similar
asymptotical behaviors of statisticalmeasures (such as distribution
moments and kurtosis), and in the overall scaling of the density
profiles. To substantiate our conclusions, we perform simulations
of a modified NDE and compare the results against the spatio-
temporal evolution of nonlinear disordered media [13,14].

2. Theoretical predictions

2.1. Basic nonlinear disordered models

The spreading of wave packets has been extensively studied
within the framework of KG/DNLS arrays. Particularly, the DNLS
describes the wave dynamics in various experimental contexts,
from optical wave-guides [5,6] to Bose–Einstein condensates [34].
It was found that the KG equation approximates well the DNLS
one under appropriate conditions of small energy densities. This
is substantiated by previous derivations of the correspondence in
the ordered lattice case [35,36]. While a similar derivation for the
disordered case is missing, an enormous amount of numerical data
shows that the analogy is working for the spreading characteristics
of wave packets [10,11,13,14]. We perform computations exactly
in the same parameter regimes covered by these previous studies.
Note also that the KG has the advantage of faster integration at the
same level of accuracy.

The DNLS chain is described by the equations of motion

iψ̇l = ϵlψl + β |ψl|
2 ψl − ψl+1 − ψl−1, (1)

where ϵl is the potential strength on the site l, chosen uniformly
from an uncorrelated random distribution [−W/2,W/2] parame-
terized by the disorder strengthW .

The KG lattice is determined by

ül = −ϵ̃lul − u3
l +

1
W
(ul+1 + ul−1 − 2ul), (2)

where ul and pl are, respectively, the generalized coordinate/
momentum on the site lwith an energy density El. The disordered
potential strengths ϵ̃l are chosen uniformly from the random
distribution [1/2, 3/2]. The total energy Ē =


l El acts as the

nonlinear control parameter, analogous toβ in DNLS (see e.g. [11]).
Both models conserve the total energy, the DNLS additionally

conserves the total norm S =


l |ψl|
2. The approximate mapping

from the KG to the DNLS is βS ≈ 3WĒ was empirically confirmed
in a large number of extensive numerical simulations [10–14].

Therefore we restrict analytics to the DNLS model. We also note
that we exclude here numerical considerations for strong nonlin-
earities where self trapping occurs in the DNLS model rigorously
due to the two integrals of motion [17]. For the KG a similar the-
orem does not exist (note however that again previous numerical
investigations [10–14] showed that self trapping occurs in the KG
case as well up to the largest computed times).

2.1.1. Spreading predictions
In order to quantitatively characterize the wave-packet spread-

ing in Eqs. (1) and (2) and compare the outcome to the NDEmodel,
we track the probability at the l-th site,Pl ≡ nl = |ψl|

2, where nl is
the normdensity distribution. Note that the analog of nl in the KG is
the normalized energy density distribution El. We then track a nor-
malized probability density distribution, zl ≡ nl/


k nk. In order

to probe the spreading, we compute the time-dependentmoments
mη =


l zl(l − l̄)η , where l̄ =


l lzl gives the distribution center.

We further use as an additional dynamical measure the kurto-
sis [37], defined as γ (t) = m4(t)/m2

2(t) − 3. Kurtosis is an indi-
cator of the overall shape of the probability distribution profile—in
particular, as a deviation measure from the normal profile. Large
values correspond to profiles with sharp peaks and long extending
tails. Low values are obtained for profiles with rounded/flattened
peaks and steeper tails. As an example, the Laplace distribution has
γ = 3, while a compact uniform distribution has γ = −1.2.

The time dependence of the second moment m2 of the above
distributions zl was previously derived and studied in [10–14].
Different regimes of energy/norm subdiffusion were observed and
explained. Generally,m2 follows a power-law tα with α < 1. Here
we briefly recall the key arguments.

In the linear limit Eqs. (1) and (2) reduce to the same eigenvalue
problem [10,11]. We can thus determine the normalized eigenvec-
tors Aν,l and the eigenvalues λν . Withψl =


ν Aν,lφν , Eq. (1) reads

in an eigenstate basis as

iφ̇ν = λνφν + β


ν1,ν2,ν3

Iν,ν1,ν2,ν3φ
∗

ν1
φν2φν3 , (3)

where Iν,ν1,ν2,ν3 =


l Aν,lAν1,lAν2,lAν3,l are overlap integrals and
φν determine the complex time-dependent amplitudes of the
eigenstates.

In [12] the incoherent ‘‘heating’’ of cold exterior by the packet
has been established as the most probable mechanism of spread-
ing. Following this analysis, the packet modes φν(t) should evolve
chaotically with a continuous frequency spectrum. In particular,
chaotic dynamics of phases is expected to destroy localization. The
degree of chaos is linked to the number of resonances, whose prob-
ability becomes an essential measure for the spreading. Previous
studies [38] indicate that the probability of a packet eigenstate to
be resonant is R(βn) = 1− e−Cβn, with C being a constant depen-
dent on the strength of disorder. The heating of an exterior mode
close to the edge of the wave packet with norm density n would
then follow

iφ̇µ = λµφµ + βn3/2R(βn)f (t) (4)

with delta-correlated (or, reasonably, short-time correlated) noise
f (t), and lead to

φµ2 ∼ β2n3(R(βn))2t . The momentary diffu-
sion rate follows as D ∼ β2n2(R(βn))2.

With m2 ∼ n−2
= Dt one arrives at 1/n2

∼ β(1 − e−Cβn)t1/2.
Depending on the product Cβn being larger or smaller than one,
the packet has two regimes of subdiffusion (and a dynamical
crossover between them): m2 ∼ βt1/2 (strong chaos) and m2 ∼

β4/3t1/3 (asymptotic weak chaos) [10–14].
The validity of the assumption of incoherent phases and of

Eq. (4) was established through numerical studies for the first time
byMichaely and Fishman [39], moving the above conjecture based
theories onto solid grounds.
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