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h i g h l i g h t s

• A complex parameter-space is revealed for the dynamics of a simple two-mode oscillator ensemble.
• Different types of collective responses are identified.
• The classical two-mode stochastic oscillator model is generalized.
• The possibility to obtain non-trivial synchronization in natural systems is discussed.
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a b s t r a c t

The parameter-space of a simple model that exhibits nontrivial spontaneous synchronization is
thoroughly investigated. The model considers two-mode stochastic oscillators, coupled through emitted
pulses by a simple optimization rule. Different types of collective responses are identified as a function
of two relevant model parameters that are related to the optimization threshold and the periods of the
two oscillation modes. It is shown that the investigated system exhibits partial synchronization under
unexpectedly general conditions.

© 2013 Elsevier B.V. All rights reserved.

1. Introduction

Spontaneous synchronization appears in a large variety of
systems in nature [1–3]. Well-known examples include biological
systems such as fireflies flashing in unison [4] or crickets chirping
together [5], rhythmic applause [6,7], pacemaker cells in the
heart [8], the menstrual cycles of women living together [9],
oscillating chemical reactions, mechanically coupledmetronomes,
pendulum clocks hung on the same wall, and many other systems.

Several mathematical models have been proposed to explain
and describe the spontaneous synchronization phenomena in large
interacting ensembles. Most of these models can be grouped into
one of two broad categories that are distinguished by the nature
of coupling between the oscillators: those that are based on phase
coupling and those that are based on a pulse-like coupling.
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The prototypical model for phase coupled oscillators is the
Kuramoto model [10]. However, there are many systems in nature
where one cannot define an associated periodic phase variable,
thus the Kuramoto model is not a suitable description for them.
In the case of systems where the interaction between oscillators is
pulse-driven (such as fireflies, firing neurons, rhythmic clapping,
etc.), integrate and fire type synchronization models are used
[11–14].

A novel model that leads to synchronization in a non-trivial
manner was introduced by Nikitin et al. [15]. Originally the
model was inspired by the study of rhythmic applause [6,7],
but it is relevant for all those complex systems where the
units are oscillators with fluctuating periods, and can operate in
different oscillation modes. In the simplest version of the model,
the oscillation modes differ in their frequencies. Such systems
are frequent in nature: a few well known examples are the
ensembles of thalamocortical relay neurons [16], the unicellular
alga Gonyaulax polyedra [17], or the American snowy cricket [18].
In this family of models, similarly to the integrate and fire models,
the oscillators are coupled through emitted pulses. Interaction
between the oscillators does not however favor synchronization
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in a direct way. Instead, the dynamics of the system is aimed
to keep the average output in the system close to a desired f ∗

threshold level. This optimal threshold level is approached by
switching between the oscillation modes. Whenever the average
output pulse level in the system is lower than the desired one,
the oscillators are working in a higher frequency mode to increase
the average output intensity per unit time. Correspondingly, when
the output level is higher than f ∗, the oscillators are working in a
lower frequency mode. Synchronization appears unexpectedly, as
a side effect of this optimization. Numerical studies have shown
that synchronization appears only for a certain parameter range of
the model [19,20]. These studies were investigating the influence
of the chosen f ∗ threshold level in the optimization dynamics.
Some preliminary studies were done to investigate the influence
of the randomness as well. In the case of bimodal oscillators, the
effect of changing the ratio of the frequencies of the two modes
was however not investigated at all in previous works, and also
the phase space of the model was not mapped with sufficiently
high accuracy before. In the present work we focus on exploring
the behavior of the model as a function of the f ∗ threshold level
and the ratio of mode periods, and explore the phase space with
a much improved accuracy. We have found that this apparently
simple model of bimodal oscillators has a parameter space with a
rather complex and surprisingly non-trivial structure.

2. The two-mode stochastic oscillator model

2.1. Description of the model

The basic version of the model considers an ensemble of N
identical bimodal, globally coupled, stochastic oscillators [15]. At
any time, an oscillator can either be active, emitting a signal of
strength 1/N , or inactive, emitting no signal. Therefore the total
output level of the system can vary between 0 and 1. These
oscillators can be intuitively thought of as flashing units. For
simplicity, from now on we shall refer to active ones as lit and
inactive ones as being in an unlit or dark state. In accordance with
this intuitive picture, the sum of the units’ output levels can be
thought of as the total light intensity in the system.

The units are stochastic bimodal oscillators. They can operate
in two oscillation modes, one with a shorter and one with a
longer period. These will be referred to as mode 1 and mode 2,
respectively. The periods of themodes are random, and their mean
values are denoted by τ1 and τ2. Let us define in the following the
dynamics of the units in a more rigorous manner.

At the beginning of each period, the oscillators are dark. After a
while, they light up and stay lit until the end of the period. A full
oscillation period has a stochastic duration. For the sake of more
precise mathematical description, let us consider three phases
during a full oscillation period, labeled A, B and C , respectively.
During phase A and B the units are dark, while during phase C they
are lit. Theduration of phaseA, τA, is a randomvariable drawn from
the interval [0, 2τ ∗

] with a uniform distribution. Let us denote the
mean value of τA by ⟨τA⟩ = τ ∗. Phase A is merely a means of
describing the stochasticity of the duration of an oscillation period.
In this paper we shall assume that τ ∗

≪ τ1. The duration of phase
B, τB, can have two values, τB1 and τB2, corresponding to the two
oscillation modes. The duration of the lit phase, τC , is fixed. The
average lengths of the periods of themodes is the sum of themean
durations of these three phases: τ1 = ⟨τA⟩ + ⟨τB1⟩ + ⟨τC ⟩ =

τ ∗
+ τB1 + τC and similarly τ2 = τ ∗

+ τB2 + τC . Since the units
stay lit for a greater fraction of the short periodmode than the long
one, the average light intensity will be larger when the units are
oscillating in the short period mode.

The coupling between the oscillators is realized through an
interaction that strives to optimize the total light intensity in the

system, denoted f . At the beginning of each period, a unit decides
whichmode to follow based on whether the total light intensity, f ,
is greater or smaller than a threshold level f ∗:

• If f ≤ f ∗, the shorter period mode will be chosen. Since
an oscillating unit stays lit for a greater fraction of a full
period when it is operating in the short mode, this will help in
increasing the average light intensity in the system.

• If f > f ∗, the longer period mode will be chosen, reducing the
average total light intensity in the system.

By this dynamic, each oscillating unit individually aims to
achieve a total output intensity as close to f ∗ as possible, based
on their instantaneousmeasurements of the output level. As a side
effect of this optimization procedure, synchronization can emerge:
the total output intensity of the system becomes a periodic
function and the units will flash in unison [15,19–21].

The simple model presented in the previous paragraphs differs
from the original one described in [15,19] only in the distribution
of the duration of the stochastic phase, τA. In the original model,
τA was exponentially distributed, and the behavior of the system
was studied as a function of the variables τ ∗

= ⟨τA⟩ and f ∗. The
present paper focuses on the case when τ ∗

≪ τ1, therefore the
precise statistical distribution of τA does not influence the results
significantly. The reason for choosing a uniform distribution for
this study is that using a distribution defined on a bounded interval
simplifies numerical modeling of the system. Contrarily with the
previous works, in this paper the system is studied as a function
of the parameter f ∗ and the ratio of the average periods of the two
oscillation modes, τ2/τ1.

There are several variations possible on the basic version of the
model. Some of these variations have been previously shown to
also lead to synchronization. In [21] a version of the model with
the same duration of the dark phase and a variable duration lit
phasewas studied,while in [20] itwas shown that synchronization
emerges also when using multimodal oscillators or when the f ∗

parameter is locally fluctuating. The lit phase can occur at the
beginning or at the endof the oscillationperiod, leading to different
behaviors. Finally, in this paper we will show that synchronization
will occur even when a reversed optimization is used, that aims to
achieve an output as different from the threshold f ∗ as possible.

Three versions of the bimodal oscillator model will be
considered here: model 1. the basic model described above with
a fixed-duration lit phase, and a variable duration dark phase;
model 2. a model with variable duration lit phase and a fixed-
duration dark phase; and model 3. fixed-duration lit phase and
variable duration dark phase with a reversed choice of the long
or short modes depending on the f ∗ value. This last case will be
referred to as ‘‘anti-optimization’’ because the oscillators strive
to achieve an output as different from f ∗ as possible. Partial
synchronization will emerge in all three cases.

2.2. The order parameter

We need a quantitative measure to characterize the synchro-
nization level of the system. The order parameter used in previous
studies [15,19,20] measures the periodicity level of the output sig-
nal in a tedious manner, estimating the periodicity level, p of the
global signal. When considering numerical modeling to simulate
the system, the output level is computed at discrete points in time.
Unfortunately the periodicity measure p used in previous studies
turned out not to be practical when the output signal is highly pe-
riodic and is known at discrete points only. The finite time reso-
lution limits the precision of finding of the best period, which in
turn might have a significant effect on the computed value of the
periodicity level p. The behavior of p as a function of the model pa-
rameters will no longer be characteristic of the dynamics, but will
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