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We study the divergence theorem on pseudo-Finsler spaces and obtain a completely Finslerian
version for spaces having a vanishing mean Cartan torsion. This result helps to clarify the problem
of energy-momentum conservation in Finsler gravity theories.
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1. Introduction
Two Finslerian divergence theorems have been discussed by H. Rund [1] and Z.

Shen [2, 3]. While they both equate a certain volume integral on a domain of M
with a surface integral at the boundary, they have quite a different nature.

Let π : TM → M be the tangent bundle, let E = TM\0 be the slit tangent
bundle, and let VE be the kernel of π∗, namely the vertical tangent bundle. Let
L : TM\0 → R be the Finsler Lagrangian (for detailed definitions we refer the
reader to Section 2), and let g be its vertical Hessian, namely the Finsler metric.
Rund’s theorem involves a vector field Z : E→ TM , a section s : M → E, and the
Finslerian divergence of Z on E calculated with the horizontal covariant derivative
and pulled back to M using s (cf. Eq. (4)). It has the drawback that the boundary
term is not genuinely Finslerian, indeed, both the normal to the hypersurface and
the boundary form are deduced from the pullback metric s∗g. So there appear
elements of Riemannian geometry.

The version by Shen is somewhat complementary [3, Theorem 2.4.2]. It is less
Finslerian for what concerns the vector field since it deals with a field X : M → TM
on the base, for the computation of whose divergence the Finsler connection is
not required. However, the boundary term is genuinely Finslerian as it involves the
notion of Finsler normal to a hypersurface.

In this work we are going to elaborate a further version of the divergence
theorem in Finsler geometry. First, we shall give a short derivation of Rund’s result
and then we shall show that for pseudo-Finsler spaces with vanishing mean Cartan
torsion, Iα = 0, it is possible to give a genuinely Finslerian divergence theorem in
which both the vector field and the boundary terms are Finslerian.
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It must be recalled that by Deicke’s theorem [4–6], a Finsler space with vanishing
mean Cartan torsion is actually Riemannian. As a consequence, the mentioned
result will be of interest only for pseudo-Finsler spaces of nondefinite signature.
It has been suggested by the author that Lorentz–Finsler spaces with zero mean
Cartan torsion might be the appropriate objects of study in Finsler gravity theory
[7–9], particularly because they have affine sphere indicatrices and because, as in
general relativity, they are uniquely determined by a spacetime volume form and
a light cone distribution [10]. Therefore, it is expected that the results of this work
could shed light on the problem of energy-momentum conservation in Finslerian
extensions of general relativity.

2. Connections in pseudo-Finsler geometry
In this section we assume some familiarity with the notion of Finsler connection

and of pullback connection [7,11–16]. Let us give some key coordinate expressions
in order to fix terminology and notation. Let {xµ} be coordinates on a chart of
M and let {xµ, yµ} be the induced coordinates on TM . The Finsler Lagrangian is,
by definition, positive homogeneous of degree two L (x, sy) = s2L (x, y), ∀s > 0.
Although we assumed that L is defined on the slit tangent bundle, this assumption
can be relaxed, e.g. it could be defined on just a convex cone subbundle provided the
next equations are evaluated on its domain, see [17, 18] for a complete discussion.
The Finsler metric is given by the Hessian gµν = ∂2L /∂yµ∂yν and is assumed
nondegenerate. The Cartan torsion is

Cαβγ =
1
2
∂

∂yα
gβγ

while the mean Cartan torsion is Iγ = gαβCαβγ .

EXAMPLE 1. A nontrivial example of affine sphere spacetime is

L = − 2
33/4

((
1
2dt +

√
3

2 a(t)dz
)2
)1/4 ((√

3
2 dt −

1
2a(t)dz

)2
− a2(t)(dx2

+ dy2)

)3/4

,

which in the low velocity limit (with respect to an observer whose velocity field
is u ∝ ∂t ) gives the general relativistic Friedmann metric in the flat space section
case (i.e. k = 0) g = −dt2 + a(t)2(dx2

+ dy2
+ dz2). Here a(t) is the scale factor

of the Universe. Many other examples of affine sphere spacetimes and a discussion
can be found in [9]. There are really plenty of affine sphere spacetimes since there
are plenty of cone structures and volume forms. If the light cones have ellipsoidal
sections one recovers the usual Lorentzian spacetimes [10]. We remark that in what
follows we do not assume a Lorentzian signature for the Finsler metric, though this
is certainly the most interesting case.

A nonlinear connection is a splitting of the tangent space T E = VE⊕HE into
vertical and horizontal bundles. A basis for the horizontal space is given by
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