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h i g h l i g h t s

• Wave scattering from randomly rough two-dimensional hardwalls are obtained.
• Rigorous computer simulations are performed.
• The full angular distribution of the scattered intensity is obtained.
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a b s t r a c t

By the use of Green’s second integral identity we determine the field scattered from a
two-dimensional randomly rough isotropic or anisotropic Dirichlet or Neumann surface
when it is illuminated by a scalar Gaussian beam. The integral equations for the scattering
amplitudes are solved nonperturbatively by a rigorous computer simulation approach.
The results of these calculations are used to calculate the full angular distribution of the
mean differential reflection coefficient. For isotropic surfaces, the results of the present
calculations for in-plane scattering are compared with those of earlier studies of this
problem. The reflectivities of Dirichlet and Neumann surfaces are calculated as functions
of the polar angle of incidence, and the reflectivities for the two kinds of surfaces of
similar roughness parameters are found to be different. For an increasing level of surface
anisotropy, we study how the angular intensity distributions of the scattered waves are
affected by this level. We find that even small to moderate levels of surface anisotropy
can significantly alter the symmetry, shape, and amplitude of the scattered intensity
distributions when Gaussian beams are incident on the anisotropic surfaces from different
azimuthal angles of incidence.
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1. Introduction

Scalar wave scattering from non-planar, impenetrable surfaces has been studied extensively in science and engineer-
ing [1–3]. Initially, this scattering problem was treated by various approximate methods. Here it suffices to mention
geometrical optics or ray-tracing [4,5], and physical optics methods based on the Kirchhoff approximation [6,7].

The earliest nonperturbative calculations of the scattering of a field from a two-dimensional randomly rough surface
were the studies of the scattering of a scalar beam, incident from vacuum, on a Dirichlet [8–10] or a Neumann surface [10]
carried out by Tran and Maradudin and by Macaskill and Kachoyan. These calculations were based on Green’s second
integral identity [11]. The integral equations for the source functions, namely the values of the field in the vacuum or
its normal derivative, evaluated on the rough surface, were transformed into matrix equations which were then solved
by iterative approaches. The amplitudes of the scattered field are expressed in terms of these source functions, and the
differential reflection coefficient is expressed through the scattering amplitudes. The differential reflection coefficient (DRC),
an experimentally accessible quantity, gives the fraction of the total time-averaged flux incident on the rough surface that
is scattered into an element of solid angle about a specified direction of scattering. In scattering from a randomly rough
surface it is the average of the DRC over the ensemble of realizations of the surface profile function that is calculated. The
result is called the mean differential reflection coefficient (mean DRC). Multiple scattering effects, in particular enhanced
backscattering [12], were present in the results for the dependence of the mean DRC for in-plane scattering on the polar
angle of scattering and a fixed polar angle of incidence.

Although in the years following this pioneering work several nonperturbative calculations of the scattering of vector
fields from impenetrable [13–16] and penetrable [17–22] two-dimensional randomly rough surfaces were carried out, little
attention seems to have been directed at rigorous nonperturbative calculations of the scattering of incident beams from
Dirichlet and Neumann surfaces perhaps because they are simpler than the scattering problems studied in these references.
Nevertheless, the results of these calculations are relevant, for example, in ocean acoustics in the context of the scattering
of a sonic wave from a rough ocean floor [23,24].

In this paper we revisit the problem of the scattering of a scalar beam from a two-dimensional randomly rough surface,
and investigate properties of the scattered field not considered in the earliest studies of this problem [8–10]. Thus, in
addition to presenting results for scattering from surfaces whose profiles are isotropic Gaussian random processes we also
present results for the scattering from surfaces whose profiles are anisotropic Gaussian random processes. In addition to the
contribution to the mean differential reflection coefficient from the field scattered incoherently in plane, we also present
results for the reflectivities of these surfaces and the full angular distribution of the intensity of the scattered field. Moreover,
these calculations are carried out by means of improved algorithms that yield accurate solutions of the integral equations
arising in the scattering theory without the use of iterative methods of the Sturm–Liouville type or modifications thereof
[8–10].

2. Scattering system

The system we consider in this work consists of a medium that supports the propagation of scalar waves without
absorption, e.g. a liquid, in the region x3 > ζ (x∥), where x∥ = (x1, x2, 0) is an arbitrary vector in the plane x3 = 0, and
amedium that is impenetrable to scalar waves in the region x3 < ζ (x∥) [Fig. 1]. The surface profile function ζ (x∥) is assumed
to be a single-valued function of x∥ that is differentiable with respect to x1 and x2, and constitutes a stationary, zero-mean,
Gaussian random process. It is defined by⟨
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where the angle brackets here and in all that follows denote an average over the ensemble of realizations of the surface
profile function. The quantity δ, the root-mean-square roughness of the surface, is defined by
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⟩ 1
2 . (2)

The function W (x∥) introduced in Eq. (1b) is the normalized surface height autocorrelation function, and has the property
that, W (0) = 1. In what follows we will also require the power spectrum of the surface roughness, g(k∥), where k∥ is a two-
dimensional wave vector k∥ = (k1, k2, 0). The power spectrum is the Fourier transform of the normalized surface height
auto-correlation function,
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In this work we will assume the following Gaussian form forW (x∥) [15]
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