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a b s t r a c t

Hammack & Segur (1978) conducted a series of surface water-wave experiments in which
the evolution of long waves of depression was measured and studied. This present work
compares time series from these experimentswith predictions fromnumerical simulations
of the KdV, Serre, and five unidirectional and bidirectionalWhitham-type equations. These
comparisons show that the most accurate predictions come from models that contain
accurate reproductions of the Euler phase velocity, sufficient nonlinearity, and surface
tension effects. Themain goal of this paper is to determine how accurately the bidirectional
Whitham equations can model data from real-world experiments of waves on shallow
water. Most interestingly, the unidirectional Whitham equation including surface tension
provides the most accurate predictions for these experiments. If the initial horizontal
velocities are assumed to be zero (the velocities were not measured in the experiments),
the three bidirectional Whitham systems examined herein provide approximations that
are significantly more accurate than the KdV and Serre equations. However, they are not
as accurate as predictions obtained from the unidirectional Whitham equation.

© 2018 Elsevier B.V. All rights reserved.

1. Introduction

Hammack & Segur [1] performed a series of tightly-controlled laboratory water-wave experiments in a long, narrow
tank with relatively shallow (10 cm) undisturbed water and a wave maker at one end. The wave maker was a rectangular,
vertically-moving piston located on the bottom of the tank, adjacent to a rigid wall at the upstream end of the tank.
Experimentswere initialized by rapidlymoving the piston downward a prescribed amount that varied between experiments.
This downward motion lead to the creation of initially rectangular waves wholly below the still water level, occupying the
entire width and 61 cm of the upstream end of the tank. The evolution of the wave train downstream from the wave maker
was investigated. Time serieswere collected at five gauges located 61 cm (x = 0, the downstream edge of the piston), 561 cm
(x = 500), 1061 cm (x = 1000), 1561 cm (x = 1500), and 2061 cm (x = 2000) downstream. The tank was long enough that
waves reflecting from the far end of the tank did not impact the time series collected. Among other things, Hammack & Segur
showed thatmany analytic and asymptotic results obtained from the KdV equation compared favorably withmeasurements
from the experiments.
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In this paper, we focus on the two experiments presented in Figures 2 and 3 of [1], which we refer to as experiment #2
and experiment #3 respectively. The experiments were identical except for the magnitude of the piston displacement and
hence initial wave amplitude. In experiment #2, the piston moved downward 1 cm, producing a downstream propagating
wave with an initial amplitude of 0.5 cm. In experiment #3, the piston stroke and initial amplitude were 3 cm and 1.5 cm
respectively. The time series from both experiments show leading triangular waves of depression followed by series of
trailing wave groups.

The main goal of this paper is to compare and evaluate a number of unidirectional and bidirectional Whitham-type
equations by comparing their predictions with the experimental time series. In doing this, we demonstrate that in order
to most accurately model these experimental measurements, a model must include (i) an accurate reproduction of the Euler
phase velocity, (ii) sufficient nonlinearity, and (iii) surface tension effects. To our knowledge, these are the first comparisons
between the recently derived bidirectional Whitham equations and data from physical experiments.

This paper is organized as follows. The model equations and their properties are presented in Section 2. Comparisons
between the experimental time series and data from numerical simulations of these equations are included in Section 3. A
summary is contained in Section 4

2. Model equations

The equations that describe the irrotational motion of an inviscid, incompressible, homogeneous fluid with a free surface
are known as the Euler equations [2]. As the experiments of interest here were conducted in a long, narrow tank, we use
two-dimensionalmodels (i.e. modelswith one horizontal and one vertical dimension). The linear phase velocity for the Euler
equations is given by

cE = ±

√
(g + τk2) tanh(kh0)

k
, (1)

where g represents the acceleration due to gravity, τ represents the coefficient of surface tension, h0 represents the mean
depth of the fluid, and k represents thewave number of the linear wave. In all of our calculations we used g = 981 cm/s2 and
τ = 72.86 cm3/s2, the surface tension of pure water at 20 degrees Celsius [3]. The plus or minus sign in Eq. (1) establishes
that the Euler equations are bidirectional (waves of each wave number can travel toward both x = −∞ and x = ∞ as t
increases) as opposed to unidirectional (waves of each wave number travel toward only x = −∞ or x = ∞ as t increases).
Since the Euler equations are difficult to work with, it is common to introduce the dimensionless parameters

δ =
h0

λ0
, ϵ =

a0
h0

, (2)

in order to derive asymptotic models that are less complicated. Here λ0 is a typical wavelength and a0 is a typical wave
amplitude. The parameter ϵ is a measure of nonlinearity and the parameter δ is a measure of wavelength or shallowness.

2.1. The KdV equation

The Korteweg–de Vries (KdV) equation can be derived from the Euler equations by assuming that δ2 ∼ ϵ ≪ 1 and
truncating atO(ϵ3). In other words, thewaves are assumed to have small amplitude and largewavelength. The KdV equation
has been well studied mathematically (e.g. [4–7]) and experimentally (e.g. [8–11]). In dimensional form, the KdV equation
with surface tension [7] is given by

ηt +

√
gh0 ηx +
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2h0

√
gh0 ηηx +

√
gh0

(h2
0

6
−

τ

2g

)
ηxxx = 0, (3)

where η = η(x, t) represents the displacement of the free surface from its undisturbed level. The linear phase velocity for
KdV with surface tension is

cK =

√
gh0

(
1 − k2

(h2
0

6
−

τ

2g

))
. (4)

Fig. 1 contains a plot of the phase velocity for KdV without surface tension (i.e. τ = 0). The plot establishes that KdV only
accurately approximates Euler’s phase velocity near kh0 = 0 (i.e. in the long-wave limit). This establishes that KdV is a
weakly dispersive model. Additionally, for a given k, there is a unique cK , so KdV is a unidirectional model (even though k
such that |k| <

√
6g

gh20−3τ
travel toward x = ∞ and k such that |k| >

√
6g

gh20−3τ
travel toward x = −∞).

2.2. The serre equations

The first strongly nonlinear, weakly dispersive set of Boussinesq-type equations was derived by Serre [12,13]. Several
years later, Su & Gardner [14] and Green & Naghdi [15] re-derived these equations using different methods. Many have
presented rigorous, perturbation theory derivations of the Serre equations, see for example Johnson [16] and Lannes [7].
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