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h i g h l i g h t s

• A multi-scale approach is applied to the perturbed mKdV equation.
• Consequently, a family of periodic travelling wave solutions are identified.
• These solutions describe traffic behaviour in an unstable region.
• Their stability is next numerically examined and are shown to be stable.
• Therefore, our travelling waves represent permanent traffic disruptions.
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a b s t r a c t

A well-known optimal velocity (OV) model describes vehicle motion along a single lane
road, which reduces to a perturbed modified Korteweg–de Vries (mKdV) equation within
the unstable regime. Steady travellingwave solutions to this equation are thenderivedwith
a multi-scale perturbation technique, where the travelling wave propagation coordinate
depends upon slow and fast variables. The leading order solution in the hierarchy is
then written in terms of these multi-scaled variables. At the following order, a system
of differential equations is highlighted that govern the slowly evolving properties of the
leading solution. Next, it is shown that the critical points of this system signify travelling
waveswithout slowvariation. As a result, a family of steadywaveswith constant amplitude
and period are identified.When periodic boundary conditions are satisfied, these solutions’
parameters, including the wave speed, are associated with the driver’s sensitivity, â, which
appears in the OV model. For some given â, solutions of both an upward and downward
form exist, with the downward type corresponding to traffic congestion. Numerical sim-
ulations are used to validate the asymptotic analysis and also to examine the long-time
behaviour of our solutions.

© 2018 Elsevier B.V. All rights reserved.

1. Introduction

Tominimise congestion it is necessary to understand traffic behaviour, which has led to many traffic related studies with
varied perspectives. Nagatani [1] has given an overview of the different methods that analyse vehicle motion. In general,
these techniques can be classified as either a macroscopic or a microscopic approach.

From a macroscopic viewpoint, Lighthill and Whitham [2] and Richards [3] derived a first order nonlinear partial
differential equation to characterise traffic density. Theseworkings are nowknownas LWR theory, however the limitations of
this analysis were highlighted by Daganzo [4]. Also, Daganzo [4] discussed certain higher ordermodels thatwere extensions
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of this LWR theory. Again, some model failings were identified, including the appearance of ‘wrong-way travel’. Zhang [5]
later proposed an alternative higher order model without this defect.

Another option is the application of a microscopic model that describes driven-diffusive-systems, such as the KLS model
(see Katz et al. [6] and Katz et al. [7]). For instance, Wang et al. [8] used this method to study a vehicle systemwithmultiple
lanes. Monte-Carlo simulations and mean field theory were then utilised to establish the traffic dynamics.

The following optimal velocity (OV) model is also an example of a microscopic approach,

d2xj
dt2

= â
(
V (∆xj(t)) −

dxj
dt

)
, (1)

where xj(t) is the position of car j at time t , ∆xj = xj+1 − xj is car j’s headway (the distance between car j and car j + 1), V
is the car’s optimal velocity, j = 0, 1, 2, . . . ,N for N cars on the road and â is the driver’s sensitivity, which is equal to the
inverse of the delay time of the driver and vehicle. This equation was derived by Newell [9] and Bando et al. [10] to describe
vehicle behaviour on a single lane road. In particular, it ensures that car j accelerates or decelerates in order to achieve a safe
distance between itself and the preceding vehicle. The traffic model (1) can be rewritten in terms of the headway such that

d2∆xj
dt2

= â
(
V (∆xj+1(t)) − V (∆xj(t)) −

d∆xj
dt

)
. (2)

As well, Bando et al. [10] proposed an optimal velocity function, which is of the form

V (∆xj(t)) = tanh(∆xj − hc) + tanh(hc), (3)

where hc is the perceived safe headway distance. This function satisfies the necessary conditions of V (∆xj(t) = 0) = 0, V
being bounded and V (h′) < V (hc) (V (h′′) > V (hc)) for h′ < hc (h′′ > hc). By applying linear stability analysis to (2), a neutral
stability line with a critical point is obtained. This line signifies the boundary between two stability regions referred to as
metastable and unstable. See Ge et al. [11] for further detail.

Muramatsu and Nagatani [12] reduced (2) to a perturbed Korteweg–de Vries (KdV) equation within the metastable zone
using nonlinear theory. This was the KdV equation with higher order correction terms. They then numerically identified
traffic solitons propagating over openboundaries,which eventually dissolved. This behaviour is expectedwithin this stability
regime since all solutions should tend to the uniform headway. Hattam [13] studied this problemwith periodic boundaries,
where cnoidalwaveswere shown to exist that represented traffic congestion. These solutionswere derivedusingmodulation
theory and then validated with numerical simulations. Again, these density waves disappeared after some time.

In contrast, solutions corresponding to the unstable region were identified by Komatsu and Sasa [14]. Beginning with
(2) close to the critical point on the neutral stability line, they derived a perturbed modified KdV (mKdV) equation. The
leading order solution to this equation was written in terms of Jacobi elliptic functions that were dependent upon the
elliptic modulation term m ∈ [0, 1]. When m = 1, this solution became the kink soliton, which exhibits the start/stop
motion representative of a traffic jam. Komatsu and Sasa [14] then applied perturbation analysis to seek steady travelling
wave solutions of the mKdV traffic model. They established that this solution type only existed when the wave modulus m
remained constant and consequently, the wave amplitude and period were fixed. A condition for m as some constant was
next found in terms of integral constraints, which then determined the relationship between m and the wave speed. They
referred to the travelling wave solutions with m = 1 as deformed kink solitons. Otherwise, for constant m ̸= 1, they were
labelled deformed periodic solitons.

Here, a multi-scale perturbation technique is applied to the perturbed mKdV equation to also identify steady travelling
wave solutions. This approach is an adaptation of the method outlined by Hattam and Clarke [15] for the steady forced
KdV–Burgers equation. Solutions of a similar form to the deformed periodic solitons found by Komatsu and Sasa [14] are
highlighted, which satisfy periodic boundaries. Komatsu and Sasa [14] proposed that this solution typewas always unstable
and only deformed kink solitons were observed numerically. The stability of our periodic waves is investigated here.

Such studies as Zhu and Dai [16] and Zheng et al. [17] have numerically examined OV traffic models within the
unstable zone, where periodic boundary conditions were imposed. The long-time behaviour was analysed, which revealed
solutions that were indicative of mKdV dynamics as kink-like waves appeared. Moreover, Li et al. [18] performed numerical
simulations over large time intervals of an OV model that described a two-lane system with periodic boundaries. As well,
this model was transformed into a perturbed mKdV equation near to the critical point. The numerical results corresponding
to this region uncovered steady periodic travelling wave solutions with constant amplitude, mean height and period. Hence,
these numerical findings suggest stable periodic solutions to the OV traffic system do propagate within this unstable regime.
Therefore, additional work is needed to determine the link between the numerical results and the nonlinear theory.

The focus of this paper is the derivation of steady travelling wave solutions to (2) and then the analysis of their long-
time dynamics. In Section 2, (2) is reduced to a perturbed mKdV equation and then steady travelling wave solutions are
determined using a multi-scale perturbation method in Section 3. The leading order solution is obtained in terms of Jacobi
elliptic functions that depend upon slow and fast variables. At the next order, a dynamical system governing the slow
variation of the leading order solution is identified. Then, in Section 4, the fixed points of this system are shown to represent
a family of steady travelling waves that do not slowly vary. This set of solutions have fixed amplitude, mean height and
period. Also, the relations between the solution parameters, the wave speed and the driver’s sensitivity are established
due to implementing periodic boundary conditions. Lastly, in Section 5, the highlighted periodic asymptotic solutions are
compared with numerical results and their long-time behaviour is studied.
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