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h i g h l i g h t s

• A perfectly matched layer approach for finite element calculations is proposed.
• This method approximates the electromagnetic field in a surface-relief grating.
• A non-integrable absorbing function makes possible to use thin absorbing layers.
• The technique reduces the computational cost of finite element calculations.
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a b s t r a c t

We introduce a perfectly matched layer approach for finite element calculations of diffrac-
tion by metallic surface-relief gratings. We use a non-integrable absorbing function which
allows us to use thin absorbing layers, which reduces the computational time when
simulating this type of structure. In addition, we numerically determine the best choice
of the absorbing layer parameters and show that they are independent of the wavelength.

© 2018 Elsevier B.V. All rights reserved.

1. Introduction

Thin film photovoltaic devices comprising a periodically corrugated metallic backreflector have become a subject of
interest over the last three decades [1–8]. The purpose of this periodic surface-relief grating is to excite surface plasmonic
polariton waves and thereby enhance the electromagnetic field in the structure. Recently, solar devices based on one
dimensional surface-relief gratings have been proposed and studied numerically: amorphous silicon thin film tandem solar
cell [6], rugate filters [9,10], periodicmultilayered isotropic dielectricmaterial on top of themetallic backreflector [8], among
others. Moreover, numerical optimization of optical and geometric parameters has been performed in order to maximize
quantities of interest such as light absorption, solar-spectrum-integrated power-flux density and spectrally averaged
electron–hole pair density [11,12]. Computing these quantities requires solving Maxwell’s equations in the frequency
domain for each wavelength in the spectral regime. In addition, during an optimization process, the equations must be
solved for a range of parameters, which might be computationally expensive. That is why efficient numerical methods
for frequency-domain Maxwell’s equations must be developed. Well known numerical techniques are the exact modal
method [13], the commonly used method of moments [14,15], the rigorous coupled-wave approach (RCWA) [16,17], the
finite element method (FEM) [18], and the finite-difference time-domain (FDTD) method [19].
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In this work we focus on FEM applied to one dimensional grating problems, since it is suitable for simulating complicated
structures such us devices comprising different materials and surface-relief shapes [11,12]. Roughly speaking, after decou-
pling the two polarization states, TE (transverse electric) and TM (transverse magnetic), the problem reduces to solving two
Helmholtz equations on the xz-plane. Because of the periodicity of the grating and the quasi-periodicity of the solution, the
unbounded domain is truncated in the x-direction using quasi-periodic boundary conditions on the vertical walls. In the
z-direction, the truncation of the domain must be done in such a way that outward propagating waves are chosen. This
can be achieved, for example, through suitable approximations of the Dirichlet-to-Neumann (DtN) operators. For instance,
the technique implemented in [11] and [12] considers a Fourier-FEM approach that involves a finite element approximation
inside the device and a representation of theDtN operators based on a Fourier series expansion of the fields in the unbounded
regions above and below the structure. Its main drawback is the potentially high computational cost due to the fact that the
equations need to be solved as many times as the number of terms in the truncated Fourier series. Notice that this is even
more significant in three dimensions since, in such a case, the number of Fourier terms increases quadratically. We refer
to [20, Section 3C], for further details.

In this work we propose a different approach that uses a perfectly matched layer (PML) placed above and below the
structure. A PML is an artificial layer that absorbs the outward propagating waves. In this case, the equations will be solved
in a slightly bigger domain but only once, which leads to a significant reduction of the computational cost. A PML approach
with an integrable absorption function has been studied in a variety of papers (see [21] or [22] and the references therein). In
particular, in [23], the authors apply such a PML strategy to grating problems. The numerical results reported in this reference
show robustness with respect to the thickness of the PML as long as a thickness of at least 50% of the grating period is used.
On the other hand, in the context of time-harmonic acoustic scattering problems, a PML based on an absorbing function
with unbounded integral has been introduced in [24]. This PML is also robust and able to absorb plane waves without any
spurious reflection (see [25,26] for further analysis and results). Moreover, since the integral of the absorbing function is
infinite, the outgoing waves are rapidly absorbed, allowing us to use a PML with thickness significantly smaller than that
of [23]. Furthermore, we show in this paper that the PML introduced in [24] can be adapted to absorb also evanescentmodes.

Based on the idea in [24], we propose and numerically study a PML with a non-integrable absorbing function applied
to a structure comprising a periodic multilayered isotropic dielectric material on top of a metallic backreflector. The same
technique can be easily applied to other structures asmentioned above [6,8–12]. The rest of this paper is organized as follows.
First, themodel problem is specified in Section 2. Then, the PML technique is introduced in Section 3 with the corresponding
FEM discretization introduced in Section 4. In Section 5 we consider some tests, which allow us to assess the proposed PML.
We end with some concluding remarks in Section 6.

2. Model setting

The problem of electromagnetic wave diffraction is based on solving Maxwell’s equations in the three-dimensional
Euclidean space occupied by a diffraction grating:

∇ × E = iωµ0H,
∇ × H = −iωε0εrE,

(1)

where E and H are the electric and magnetic total fields respectively. Here, an exp(−iωt) dependence on time t is implicit,
withω denoting the angular frequency. The free-spacewavenumber, the free-spacewavelength, and the intrinsic impedance
of the free space are denoted by k0 := ω

√
ε0µ0, λ0 := 2π/k0, and η0 :=

√
µ0/ε0, respectively, with µ0 > 0 being the

permeability and ε0 > 0 the permittivity of free space. The relative electric permittivity εr is a complex-valued piecewise
constant function specified below. In this paper vectors are written in boldface, Cartesian unit vectors are identified as ûx,
ûy and ûz and the position vector reads r = xûx + yûy + zûz .

The solar-cell structure is assumed to occupy the region Φ := {r ∈ R3
: 0 < z < Lt := Ld + Lg + Lm} with the notation

shown in Fig. 1. Within this region, the relative permittivity εr is a periodic function of x ∈ (−∞,∞) with period L and also
varies with z ∈ Φ but not with y ∈ (−∞,∞); consequently,

εr (x, z) = εr (x ± mL, z), m ∈ Z. (2)

The half-spaces {r ∈ R3
: z < 0} and {r ∈ R3

: z > Lt} are occupied by air; hence, the relative permittivity
εr (x, z) ≡ 1 in both half-spaces. The region 0 < z < Ld is occupied by a periodic multilayered isotropic dielectric (PMLID)
material comprising M layers, as shown in Fig. 1. The relative permittivity is constant on each of this layers. The region
Ld + Lg < z < Lt is occupied by a spatially homogeneous metal with relative permittivity εm and thickness Lm. Finally, the
region Ld < z < Ld + Lg contains a periodically corrugated metal/dielectric interface of period L along the x axis. The relative
permittivity in this zone is εm in themetal and that of the first layer of the dielectric material in the rest, as Fig. 1 also shows.

Since the domain is infinite in the y-direction, and the solution does not depend on this variable, we can consider a
two-dimensional cross-section parallel to the xz-plane. In such a case, the Maxwell system can be simplified by considering
the two fundamental polarizations:
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