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a b s t r a c t

We systematically review some unified variational principles for a strong interaction prob-
lem in both a stratified fluid region and a fluid–solid region. The problem is described by a
general Lagrangian formulation for an anisotropic elastic solid region, either surrounded by
an incompressible non-Newtonian fluid region or surrounding the fluid region. In the first
part, we express the fundamental equations of the regular fluid and solid regions in differ-
ential form. Then, we deduce the variational principles respectively from the principle of
virtual power and the principle of virtual work for the fluid and solid regions. The physics
principles are modified through an involutory transformation together with a dislocation
potential. In the second part, we similarly establish some multi-field variational principles
for a stratified fluid of two or more distinct fluid layers of different thicknesses and mass
densities. In the third part, we derive the variational principles for the interior and exterior
interaction problems in a fluid region with a surface piercing solid, within either a rigid or
an elastic structure. The variational principles, which operate on all the field variables lead
to the fundamental equations of the regions, including the interface conditions, as their
Euler–Lagrange equations. Some special cases of the variational principles are given.

� 2008 Elsevier Ltd. All rights reserved.

1. Introduction

In mechanics, the physical response of a continuum may be mathematically modelled by the fundamental equations,
which consist of the divergence and gradient equations, the constitutive relations, and the boundary and initial conditions
to meet the internal consistency (i.e., uniqueness and existence) of their solutions. The divergence equations were originally
established in integral (global) form by the simultaneous application of the axioms of continuum mechanics, and also, in dif-
ferential form under certain regularity and local differentiability conditions of the field variables. The constitutive relations
were always given in differential form under certain rules and invariant requirements of continuum mechanics, except for
the non-local case, as generally were the boundary and initial conditions. Alternatively, some or all the fundamental equa-
tions can be stated in variational form, as the Euler–Lagrange equations of a variational principle, which is most often desir-
able, as a standard means in solving directly the initial and mixed boundary value problems. Besides, the variational
principles were used in examining the internal consistency of solutions, in finding the bounds formulae and in establishing
the lower order equations of continuum mechanics. Historically, a panoramic development of energetic and related varia-
tional principles in mechanics, which may be traced back to Heraclitos of Ephesos and others of Hellenic Science was re-
ported (e.g., [1,2]). In fluid mechanics, Lord Kelvin [3] reported the first classical variational principle, which applies to
ideal fluids, and following his minimum energy principle, many researchers (e.g., [4–12]) formulated various variational
principles of fluids. In solid mechanics, Prange [13,14] and Hellinger [15] who were inspired by Hilbert’s lectures on
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mechanics of continua and calculus of variations constructed the first classical variational principles of elastodynamics, and
then, a large number of authors (e.g., [16–19]) contributed to the subject as well. A rich number of variational principles were
derived in almost all the fields of mechanics (e.g., hygro-thermo-piezoelectric fields [20,21]), and an elaborate account of
variational principles in fluid and solid mechanics, with their development and extensive applications can be found in the
treatises (e.g., [22–33]).

The variational principles were either formulated by a number of mathematical methods (e.g., the method of convolution
due to Gurtin [34] or deduced from a general principle of physics (e.g., Hamilton’s principle, the principle of virtual work, and
the principle of virtual power) and/or by extending it through a method of relaxation (e.g., [35]). With the application of a
mathematical method, an integral type of variational principles with an explicit functional can be derived but only for a lin-
ear and self-adjoint system of differential equations, and its existence can be tested by use of Fréchet derivatives [36]. A
physics principle denies, by definition, a functional due to its postulated statements in terms of infinitesimals (e.g., virtual
displacements/velocities, and virtual work). Accordingly, the physics principle always leads to a differential type of varia-
tional principles without a functional, which can be almost always established for any system of differential equations.
Among the physics principles, Hamilton’s principle admits an explicit functional in the presence of conservative forces only.
Moreover, the variational principles deduced from a physics principle generate only the divergence equations and the asso-
ciated Neumann’s type of boundary conditions, as their Euler–Lagrange equations. Thus, the rest of the fundamental equa-
tions remain as the constraint (subsidiary) conditions, which are most often undesirable in computation. However, the
constraint conditions can be relaxed by, for instance, an involutory (Friedrichs’s, Legendre) transformation (e.g., [37,38]),
which was widely used due to its versatility and rather easy application to holonomic as well as non-holonomic constraint
conditions (e.g., [39]). In this paper, we deduce some variational principles for the linear problems of a fluid–fluid (stratified)
and a fluid–solid (structure) strong interaction from the general principles of physics by modifying them through the invol-
utory transformation.

The fluid–solid (fluid) interaction problems gained increasingly a lot of research interest during the last few decades, due
to their immense technological applications not only in various branches of engineering but also in medical sciences, in the
context of fluid and solid mechanics (e.g., [40–51]). In an interaction problem, either a solid region is immersed partly or fully
in a fluid region of finite (or infinite) extent (i.e., the exterior problem) or surrounding a fluid region (i.e., the interior prob-
lem), and the regions influence strongly one another in many instances and their interaction becomes significant in their
physical response. The strong interaction is of primary concern in the case of a heavy fluid (e.g., water) or a rather light solid

Nomenclature

N Euclidean 3-D space
hi fixed, right-handed general system of curvilinear coordinates in N
t, T = [t0, t1) time, time interval
_v;vi;j;vi;j time differentiation, and partial and covariant differentiation with respect to hi

gij metric tensor
eijk alternating tensor
X(t), X � T region at time t, Cartesian product of the region and the time interval
X þ oX;X regular, finite and bounded region, its boundary surface and closure (=X + oX)
S free surface of a fluid region
ni, mi, Ni, gi, 1i unit outward vectors normal to the boundary surfaces
ui, ai displacement and acceleration vectors
vi velocity vector
q, fi mass density, body force vector
f, s, m terms belonging to fluid, solid and multi-layer (stratified) fluid
p hydrodynamic pressure
si, sij viscous traction vector and viscous stress tensors
ri, rij traction vector and stress tensor in fluid region
ti, tij traction vector and stress tensor in solid region
dij, eij strain rate and strain tensor
f, ff, s stand for fluid and stratified (multi-layer) fluid regions, and solid region
Ic, I, J incompressibility, initial and interface condition terms
D, G, C, B divergence, gradient, constitutive and boundary terms
cijkl, k, l material constants
K admissible state
D dislocation potential
ki, kij Lagrange multipliers
Cab functions with derivatives up to and including a and b with respect to hi and t
v*, hvi prescribed and mean value of v ¼ 1

2 ðvð1Þ þ vð2ÞÞ
[v] jump of v ¼ 1

2 ðvð2Þ � vð1Þ
� �
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