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h i g h l i g h t s

• Acoustic waves in fractal media are proposed.
• General form of dimensions of region and boundary of region are suggested.
• Solution of acoustic wave equation for isotropic fractal media is obtained.
• Supersonic mode to locate fractal areas in materials is suggested.
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a b s t r a c t

Acousticwaves in fractalmedia are considered in the framework of continuummodelswith
non-integer dimensional spaces. Using recently suggested vector calculus for non-integer
dimensional space, we consider waves in isotropic fractal media. The wave equation for
non-integer dimensional space is similar to the equation of waves in non-fractal medium
with power-law heterogeneity. We discuss some properties of speed of acoustic waves in
fractal materials.

© 2016 Elsevier B.V. All rights reserved.

1. Introduction

Fractals can be considered as measurable metric sets with non-integer dimensions [1,2]. The fractal medium can be
defined as amediumwith a physical non-integer dimension (see [3] and references therein). The continuousmodel approach
for description of fractal distributions of particles, charges, currents, media and fields has been proposed in [4–8] and then
it has been developed in [9–12,3] and other works. This approach is based on the notion of power-law density of states [3].
We can consider fractal media as continuous media in non-integer dimensional space (NIDS). The non-integer dimension
does not reflect all properties of the fractal media, but it is a main characteristic of fractal media. For this reason, continuous
models with NIDS can allow us to get some important conclusions about the behavior of the fractal media.

Theory of integration inNIDS has been suggested in [13–15]. Stillinger introduces [13] amathematical basis of integration
on spaces with non-integer dimensions. A generalization of the Laplace operator for NIDS has been suggested in [13] also.
Then Stillinger’s approach [13] has been extended by Palmer and Stavrinou [15] tomultiple variables, where a scalar Laplace
operator for non-integer dimensional spaces is also suggested. These works propose differential operators of second order
for scalar fields only, i.e. the scalar Laplacians in thenon-integer dimensional space. The first order operators such as gradient,
divergence, curl operators, and the vector Laplacian for NIDS are not considered in [13,15]. It is obvious, that consideration
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only the scalar Laplacian in NIDS-approach greatly restricts an application of continuousmodels with NIDS for fractal media
and material. For example, we cannot use Stillinger’s form of Laplacian for displacement vector field u(r, t) in elasticity
theories, and we cannot consider equations for the electric and magnetic fields of fractal media in the framework of NIDS
models.

In work [16] the gradient, divergence, and curl operators are suggested only as approximations of the square of the
Palmer–Stavrinou form of Laplace operator. Recently a generalization of differential vector operators of first orders (grad,
div, curl), the scalar and vector Laplace operators for non-integer dimension spaces have been suggested in papers [17,18]
without any approximation. This allows us to extend the application area of continuous models with NIDS. Using the
suggested NIDS calculus, we can describe isotropic and anisotropic fractal media. The NIDS approach, which is based on
proposed vector calculus in NIDS, has been applied in the following areas: (1) the fractal hydrodynamics to describe flow
of fractal fluid in pipes [19]; (2) the fractal electrodynamics to describe fractal distribution of charges and currents [20];
(3) the theory of elasticity of fractal material [21].

In this paper, we consider acoustic waves in fractal media. Waves in fractal media have been described by continuous
models in [8–12,3]. In these works the vector calculus for non-integer dimensional is not used. In this paper, we use the
non-integer dimensional vector calculus, which is proposed in paper [18], to describe acoustic wave in isotropic fractal
media. We prove that the wave equations for non-integer dimensional spaces are similar to the equations of waves in usual
(non-fractal) media with power-law heterogeneity.

2. Vector calculus for non-integer dimensional spaces

Let us give some introduction to non-integer dimensional differentiation of integer orders (for details, see [18,17]).
In continuous models of fractal media, we will use the physically dimensionless spatial variables x/L0 → x, y/L0 → x,

z/L0 → x, r/L0 → r, where L0 is a characteristic size of the model. It allows us to have dimensionless differentiation in
D-dimensional space such that the physical quantities of fractal media have correct physical dimensions.

For simplification, we will consider a spherically symmetric case, where scalar field Φ and vector field u of fractal
media are independent of angles Φ(r, t) = Φ(r, t), u(r, t) = ur(r, t) er , where er = r/r , r = |r| and ur = ur(r) is
the radial component of u. Therefore we will use the rotationally covariant functions only. This simplification is similar to
simplification, which is used in [14] for integration over NIDS.

In the general case, the dimension D of region VD of fractal media and the dimension d of boundary Sd = ∂VD of this
region are not related by the equation d = D − 1, i.e., dim(∂VD) ≠ dim(VD) − 1, where dim(VD) = D and dim(∂VD) = d.
Let us introduce new parameter αr = D − d, which is a dimension of fractal medium along the radial direction.

The gradient operator for the scalar fieldΦ(r) = Φ(r) depends on the radial dimension αr [18] in the form

GradD,d
r Φ =

Γ (αr/2)
παr /2 rαr−1

∂Φ(r)
∂r

er . (1)

The divergence operator of the vector field u = u(r) can be represented [18] in the form

DivD,dr u = π (1−αr )/2
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Γ ((d + 1)/2)
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These operators are (D, d)-dimensional gradient and divergence for fractal media with d ≠ D− 1 (for details, see [18]). The
curl operator of the vector field u = u(r) is equal to zero, i.e., CurlD,dr u = 0.

Using operators (1) and (2) for the fieldsΦ = Φ(r) and u = u(r) er , we get [18] the scalar and vector Laplace operators
for NIDS with d ≠ D − 1 in the form

S∆D,d
r Φ = DivD,dr GradD,d

r Φ, V∆D,d
r u = GradD,d

r DivD,dr u. (3)

Then the scalar Laplacian for d ≠ D − 1 for the fieldΦ = Φ(r) is defined by the equation
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The vector Laplacian in non-integer dimensional space with d ≠ D − 1 and the field u = ur(r) er is

V∆D,d
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For D = 3 and d = 2 Eqs. (1)–(5) give the well-known expressions for the gradient, divergence, scalar Laplacian and vector
Laplacian in R3 for fieldsΦ = Φ(r) and u(r) = ur(r) er .

The vector differential operators (1), (2), (4) and (5), which are suggested in [18] for NIDS, allow us to describe complex
fractal media with the boundary dimension d ≠ D − 1 by the NIDS approach.

The suggested operators allow us to reduce the NIDS vector differentiations to usual derivatives of integer orders with
respect to r = |r|. As a result, we can reduce partial differential equations for fields in NIDS to ordinary differential equations
with respect to r ≥ 0.
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