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h i g h l i g h t s

• FDTD formulation for grid of hexagonal prisms is developed.
• FDTD method for grid of hexagonal prisms is validated with Yee FDTD method.
• Analyses of the numerical anisotropy, dispersion and stability of this FDTD method is made.
• Measurements and theoretical values of numerical anisotropy are compared.
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a b s t r a c t

The finite-difference time-domain (FDTD) method was applied in a grid of hexagonal
prisms, having as objective to yield less numerical anisotropy of phase velocity than the
Yee FDTD method (with hexahedral cells). Comparisons of wave propagation are made
between the FDTD method with grid of hexagonal prisms and the Yee FDTD method. The
theoretical analyses of the numerical anisotropy, dispersion and stability condition are
obtained using the Fourier analysis in the FDTD method with grid of hexagonal prisms.
Measurements of numerical anisotropy are also accomplished in this FDTD method, and
then ones are compared with the results of the Fourier analysis. As a result, the grid of
hexagonal prisms yielded somewhat less numerical anisotropy and dispersion than the
Yee grid. Additionally, a simplification in compensation of numerical dispersion in the grid
of hexagonal prismsmay improve on the accuracy and density ofmesh for indoor buildings
that are large, mainly in the xy-plane.

© 2016 Elsevier B.V. All rights reserved.

1. Introduction

Currently, the finite-difference time-domain (FDTD) method [1] can be considering very useful in the analyses of
electromagneticwave propagation in large indoorwireless systems, such as buildings, factories, universities, airports, and so
on. It is due to availability of computersmore andmore powerful and cheap [2,3]. However, the FDTDmethod has an intrinsic
limitation named numerical dispersion [4,5]. The numerical dispersion is the difference between the numerical phase
velocity of the electromagnetic wave in two-dimensional (2D) or three-dimensional (3D) grids and the real (physical) phase
velocity of this wave in physical media. There is another measurement, which is relating with the numerical dispersion;
it is named numerical anisotropy of phase velocity. It means that the numerical phase velocity changes in function of the
propagation direction of the wave in 2D or 3D grids. When it is being analyzed the propagation of electromagnetic waves
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Fig. 1. Primary and secondary cells of the staggered grid of hexagons [9].

in large indoor buildings in terms of wavelengths, it is very important to have low numerical dispersion that reduces phase
errors, and therefore increases the accuracy of the simulation [6]. The numerical dispersion is more easily reduced when
the maximum numerical anisotropy is also reduced. In this paper, it was developed a novel FDTD method with a grid
of hexagonal prisms, which yields much less numerical anisotropy in the xy-plane than the Yee FDTD method, and one
generates somewhat less numerical anisotropy in xz- or yz-planes than the Yee method. The results obtained are promising
to improve on the accuracy and may also reduce the density of mesh in indoor buildings that are large, mainly in the
xy-plane.

2. FDTD formulation for two-dimensional hexagonal grid

It is common knowledge, that for the FDTD method, the 2D hexagonal grid has a few hundred times less numerical
anisotropy than the 2D rectangular grid of the Yee FDTD method [7,8]. This 2D hexagonal grid is a staggered grid, and it is
formed of two different grids. The primary grid consist of big hexagons and the secondary grid consist of small hexagons [7],
as shown in Fig. 1.

It can be noted in Fig. 1 that the relation between the side ∆b of the small hexagon and the side ∆d of the big hexagon
is expressed as

∆b =
∆d
√
3
. (1)

Here is being used a simpler notation at location of the field components than that of [7]. In this notation, the spatial step
size ∆x is the distance between mesh points, i and i + 1, whereas for the spatial step size ∆y is the distance between mesh
points, j and j + 1. These spatial step sizes, ∆x and ∆y, are defined in function of the side ∆d of the big hexagon as

∆x = ∆d · cos(30°) =

√
3
2

∆d (2)

∆y =
1
2
∆d. (3)

The area AH of the small hexagon is

AH =
3
√
3

2
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(∆d)2. (4)
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