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a b s t r a c t

An important problem in the theory of lubrication is to model and analyze the effects of
surface roughness on the hydrodynamic performance. An efficient method to do this is
homogenization. In this paper we prove a general homogenization result which allows
us to consider unstationary variational problems, related to Reynolds type equations,
where the lubricant may be Newtonian or non-Newtonian. Recently, the idea of finding
upper and lower bounds on the effective behavior, obtained by homogenization, was
applied for the first time in tribology. The homogenization result in this work may there-
fore also serve as a rigorous starting point for developing these successful results to unsta-
tionary problems.

� 2008 Elsevier Ltd. All rights reserved.

1. Introduction

One important problem in tribology is to study the pressure build up in a lubricant between two surfaces (e.g. in a bear-
ing) which are in relative motion. If the surfaces are rough, then the film thickness will oscillate rapidly both in space and
time. This leads to typical homogenization problems.

Assume that the velocity of the upper surface is Vþ ¼ ðvþ;0Þ and of the lower surface it is V� ¼ ðv�;0Þ. Moreover, the bear-
ing domain is an open bounded subset of R2 denoted by X; the space variable x 2 X and t 2 ð0; TÞ � R represents the time. To
express the film thickness we introduce the following auxiliary function

hðx; t; y; sÞ ¼ h0ðx; tÞ þ hþðy� sV1Þ � h�ðy� sV2Þ;

where h0;h
þ and h� are continuously differentiable functions. Moreover, hþ and h� are assumed to be periodic. Without loss

of generality it can also be assumed that the cell of periodicity is Y ¼ ð0;1Þ � ð0;1Þ for both hþ and h�, i.e. the unit cube in R2.
We also assume that vþ and v� are such that h is periodic in s and we denote the cell of periodicity by Z. By using the aux-
iliary function h we can model the film thickness he by

heðx; tÞ ¼ hðx; t; x=e; t=eÞ; e > 0:

This means that h0 describes the global film thickness, the periodic functions hþ and h� represent the roughness contribution
of the two surfaces and that e > 0 is a parameter which describes the roughness wavelength.
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Let the function f ¼ f ðx; t; y; s; nÞ be periodic in y and s. We also assume that f satisfies suitable structure conditions. Then
for many types of incompressible non-Newtonian lubricants, see e.g. [7], the pressure ueðx; tÞmay be obtained as the solution
of a variational problem of the type (related to Reynolds type equations)

Ie ¼min
u

Z T
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ohe
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where k and c are constants. In the special case where the lubricant is Newtonian the variational problem (1) is reduced
to
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A further simplification is obtained if one of the surfaces is smooth and unstationary while the other is rough and station-
ary. In that situation he ¼ heðxÞ and the governing variational problem for the pressure ue is of the type

min
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dx: ð3Þ

The Lagrangians in (1) and (2) are rapidly oscillating both in space and time for small values of e. This implies that a direct
numerical analysis of these deterministic problems becomes very difficult, since a very fine mesh is needed to resolve the
surface roughness. This suggests some type of averaging, which immediately leads to the concept of homogenization.

The main result of this paper is that we prove a homogenization result for a class of variational problems, which includes
the homogenization of (1). Especially, this means that we show that ue two-scale converges to u0 ¼ u0ðx; t; sÞ, where u0 solves
a homogenized variational problem of the form

I ¼ inf
w0

1
jZj
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where

f0ðx; t; s; nÞ ¼ inf
w

Z
Y

f ðx; t; y; s; nþrwÞ þ bðx; t; y; sÞ � ðnþrwÞ½ �dy;

here b is given in terms of h, see (28), and the infimum is taken over all w 2W1;p
perðYÞ (functions which belong to the closure of

C1perðYÞ in W1;pðYÞ and have mean value zero). Moreover, we have convergence of the energy, i.e. Ie ! I as e! 0.
The homogenization of the linear Euler equation corresponding to (2) has been studied in [3,4]. In the more engineering

oriented work [3] the formal method of multiple scale expansion was used and several numerical illustrations were pre-
sented. In [4], the authors used two-scale convergence to prove the homogenization result. This is also the method, which
we will develop and apply to study the homogenization of the non-linear variational problem (1). Recently, bounds on the
homogenized energy density, corresponding to the linear and stationary problem (3), were derived in [9]. Later it was also
clearly demonstrated in [2] that these bounds may be used to get very good approximations of the homogenized solution. It
is therefore interesting to develop the idea of bounds to the more general problem (1). Hence, one additional benefit of this
work is that it may serve as starting point for these further studies.

The paper is organized in the following way: In Section 2, we develop some results concerning two-scale convergence.
These results are then used in Section 3 to prove a homogenization result for a class of variational problems. The result is
used to homogenize (1) in Section 4. For the readers convenience we have also included an appendix concerning existence
and uniqueness of minimizers to the class of variational problems, which is homogenized.

2. Two-scale convergence

The concept of two-scale convergence, see e.g. [1,11,12], is now a frequently used tool for analyzing different homogeni-
zation problems. Especially we refer the reader to[4,6,8,14], where problems related to lubrication theory have been studied.
In this section, we present and prove some results about two-scale convergence, which will be used in the proof of our
homogenization result.

Throughout this paper we let x 2 X denote the space variable, where X is an open bounded subset of RN , the time variable,
denoted by t, belongs to the interval ð0; TÞ and XT ¼ X� ð0; TÞ. We also assume that 1 < p <1 and q is the conjugate of p, i.e.
1=pþ 1=q ¼ 1. Without loss of generality we also assume in this section that jY j ¼ jZj ¼ 1.

Definition 1. Let ðueÞ be a bounded sequence in LpðXTÞ and u0 2 LpðXT � Y � ZÞ. Then we say that ðueÞ two-scale converges to
u0 (we write ue*

2
u) if
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as e! 0; for every test function / 2 C10 ðXT ; C1perðY � ZÞÞ.
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