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h i g h l i g h t s

• Conservation laws consistent with the Westervelt equation are presented.
• Finite Volume method is implemented and verified for these conservation laws.
• High efficiency is achieved using GPU implementation.
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a b s t r a c t

A form of the conservation equations for fluid dynamics is presented, deduced using
slightly less restrictive hypothesis than those necessary to obtain theWestervelt equation.
This formulation accounts for full wave diffraction, nonlinearity, and thermoviscous
dissipative effects. A two-dimensional finite volume method using the Roe linearization
was implemented to obtain numerically the solution of the proposed equations. In order
to validate the code, two different tests have been performed: one against a special Taylor
shock-like analytic solution, the other against published results on aHigh Intensity Focused
Ultrasound (HIFU) system, both with satisfactory results. The code, available under an
open source license, is written for parallel execution on a Graphics Processing Unit (GPU),
thus improving performance by a factor of over 60 when compared to the standard serial
execution finite volume code CLAWPACK 4.6.1, which has been used as reference for the
implementation logic as well.

© 2015 Elsevier B.V. All rights reserved.

1. Introduction

The Westervelt equation is a classical model for nonlinear acoustic propagation. It was originally obtained in 1963 by
P. J. Westervelt [1] and it describes acoustic propagation taking into account the competing effects of nonlinearity and
attenuation. This and other nonlinear models for acoustics can be obtained adding hypotheses, commonly in the form of
restrictions, to the conservation principles of mass, momentum, and energy. Two other classical nonlinear acoustics models
are the KZK and Burgers equations, and both can be obtained adding restrictions to theWestervelt equation: to propagation
at small angles from a certain axis (quasi-planar propagation) in the case of the KZK equation, and to propagation strictly
along a single axis (planar propagation) for the Burgers equation [2].

With a few notable exceptions, solutions for these nonlinear equations, when known, can only be expressed in non
trivial forms, and tools like numerical methods are often required to investigate their nature. Numerical methods, and the
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means required to implement them, have been in continuous development in recent years. Primarily, early publications
have been devoted to the description of themore restrictedmodels, like the plane Burgers equation [3], whose exact solution
has known analytical expressions [3–5]. Nevertheless, numerical methods in this case have certainly played an important
role [6]. After that, the KZK equation became a widely used model for diagnostic and therapeutic medical applications [7],
and most of the known solutions have been obtained only by numerical means [8], including some more recent extensions
of the model where the restrictions in propagation direction have been partly relaxed [9–12]. Modern medical applications,
such as extracorporeal shock wave therapy [13], focus control of high intensity focused ultrasound (HIFU) in heterogeneous
media [14], and ultrasound imaging [15], are now demanding more sophisticated solutions to describe systems where the
geometric complexity of the nonlinear acoustic field is important. Thus, in recent years, a number of schemes have been
produced concernedwith implementingmethods which are not limited in terms of the propagation direction [16–18,14,15,
19–23], as required in order to solve the Westervelt or Kuznetsov equations, the latter being a model even less restrictive
than theWestervelt equation [24]. These numericalmethods are sometimes referred to as full wavemethods [20]. To the best
of our knowledge, no general analytic solutions are known for the full wave case either for the Kuznetsov or the Westervelt
equations. In the present work we aim to give a full wave numerical solution to a set of conservation laws, obtained using
slightly less restrictive hypotheses than those necessary to arrive at the Westervelt equation.

A great number of numerical methods have been used to solve the nonlinear acoustic field, some of them operating
over the time domain [19,20,14,21,23], while others involve calculations over the frequency domain [16,17,25,11,18,22].
The numerical method implemented in the present work is a finite volumemethod, a time domain method. These methods
are based on conservation laws, giving them from the start an intrinsic relation to the equations that conform the basis of
all acoustic wave models. In the present work the CLAWPACK [26] 4.6.1 serial code, which serves as a standard for finite
volume schemes, has been used as a reference for the implementation logic in the presented open source C++/CUDA code,
which executes the finite volume method in a GPU graphic card, and notably improves the performance compared to serial
schemes. Whereas in the recent literature it is a common practice to use parallelized code for this kind of simulations, this
code is mainly run through clusters [17,15,9,14,27,21,28], and GPU execution is just starting to be used [25,29,19,28].

The paper is organized as follows: the relevant equations for this study are described in Section 2; the numerical
procedure is described in Section 3; validation tests for the numerical method, and details of their implementation, are
given in Section 4; finally, discussion and conclusions are presented in Section 5.

2. Nonlinear acoustic equations

In standard form, the Westervelt equation is given as [2]
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where p′ is the acoustic perturbation pressure, ∇2 is the Laplacian for spatial variables, t is time, c0 is speed of sound for
small signals at an equilibrium state denoted with the zero subscript, β is the coefficient of nonlinearity [30], and δ is sound
diffusivity [31].

Since we want to use a finite volume numerical approach, we need to express the Westervelt equation as a system of
conservation laws, or more precisely, we need a set of conservation laws as consistent as possible with the Westervelt
equation. To begin with, consider the conservation equations for mass and momentum in a compressible fluid, as stated by
Hamilton and Morfey [2],
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where p is the total pressure, ρ is the total mass density, u is the fluid velocity (null value of the equilibrium state is
assumed), µ is the dynamic viscosity, and µB is the bulk viscosity. As we have mentioned before, solving these equations,
even numerically, requires some assumptions to be made, in this case because the number of variables is greater than the
number of relations among them. To keep the mentioned consistency, the hypotheses used here are the same as those used
by Hamilton and Morfey [2] to obtain the Westervelt equation, with one exception, which we discuss below. One of these
restrictions has to do with the size of the perturbations, p′, ρ ′, and T ′, considered small and of the same order:
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where ϵ = |u|/c0 is the Mach number, T refers to temperature, and p0, ρ0, and T0, are reference values for pressure, density,
and temperature, respectively, so that p = p0 + p′, ρ = ρ0 + ρ ′, and T = T0 + T ′. In addition, the fluid is assumed to be
irrotational, we use ρ Du

Dt =
∂ρu
∂t + ∇ · (ρu ⊗ u) to stress the conservative character of Eq. (3), and then we neglect a third
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