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h i g h l i g h t s

• Electromagnetic plane wave diffraction by a moving, perfectly conducting half-plane is reconsidered. Relativistic velocities are
admitted.

• It is shown that the resulting total field distribution is not simply a moving map of the distribution observed in a stationary case.
• Doppler effect is recognized, and suitable frequencies are found.
• The equation for diffracted wave constant phase surfaces is found.
• The issue of energy transformation in the case of non-parallel shadow boundary and field rays is shortly explained.
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a b s t r a c t

Aproblem is reconsidered of time harmonic, electromagnetic diffraction by a perfectly con-
ducting half-plane moving in free space with a constant velocity. Similarities and differ-
ences between stationary and moving diffraction have been discussed.

© 2015 Elsevier B.V. All rights reserved.

1. Introduction

The interest in scattering of electromagnetic fields by different objects has a long history. Fundamental principles gov-
erning the propagation of geometrical optics field were known yet in middle ages. Later, the effect of diffraction of light at
edges of openings in flat screenswas analysed and explained in terms of Huygens principle. Solutions to particular problems
were naturally approximate. At the turn of 19th and 20th century first exact solutions for simple scatterers were found. In
this number was a wedge, and its special case — a half-plane. With developing mathematical methods new tools were used
in the study of electromagnetic scattering. The Wiener–Hopf method and asymptotic techniques were here of particular
importance. They gave a great momentum to creation of new methods for studying diffraction by scatterers with complex
shapes, and allowed for better understanding of physical phenomena accompanying the diffraction.

Most of particular problems dealt with stationary diffraction, i.e. with objects being at rest with regard to the observer
and the interacting wave source. However, new technical applications directed the interest towards moving objects. If
viewed from the perspective of the Newton space–time transformation, no interesting facts should be expected. From this
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Fig. 1. Geometry of the problem.

standpoint the field distribution found for stationary diffraction is ‘‘travelling’’ along with the moving scatterer. However, it
is nowwell known that Newton transformation is only an approximation, admissible for sufficiently small object velocities.
The proper approach is Einstein’s special theory of relativity,which is founded on Lorentz transformation. That theory is valid
for any object velocity, admitting its values varying from zero to relativistic ones. One can expect that if the object velocity is
comparable with the velocity of light c , at which the electromagnetic field propagates, the scattered field distribution may
differ from that in stationary case.

Fortunately, in the construction of exact solutions for scattering by objects in move, already known stationary solutions
can be conveniently employed. It can be done with the help of so called Frame Hopping Method which consists in studying
diffraction in two frames of reference. The first frame, referred to as ‘‘laboratory’’ one, is the frame, where the incident field is
defined and the scattering object is seen as moving with a specific, non-zero velocity. The other frame of reference, referred
to as ‘‘stationary’’, is the frame, where the scattering object is at rest. Customarily, all quantities (fields, coordinates) in the
stationary frame of reference are primed. They are subject to Lorentz transformation when changing from stationary to
laboratory frame of reference, or vice versa. This method was first used by Einstein [1].

Of special interest are the scatterers with edges, where the simplest shape is a half-plane. There is a number of publica-
tions in this class of problems [2] through [3], dealing with both harmonic and pulse incident fields. Relativistic half-plane
and wedge pulse diffraction was studied in [3,4]. Different formalism in the analysis was used in [2,5]. New differential
operators, facilitating field transformations in different inertial frames of reference, were proposed in [6].

In particular, analytic study of time harmonic plane wave diffraction by a perfectly conducting half-plane and physical
interpretation of the results was carried out in [7] and [8]. This problem is of special importance, because it is employed
in the construction of the solutions of problems involving screen scattering for both harmonic and pulse excitation. The
purpose of the present paper is to show already known results in a simpler form, and supplement themwith some extension,
particularly concerning the Doppler phenomenon. While in [8] two different geometries are considered, we study only one
geometry. However the results presented here seem to be simpler in form, as the analysis used here does not involve contour
integration in the complex frequency plane.

2. Problem formulation

Consider two frames of reference. In the first one the incident field is defined and this is the frame where the scattered
field is sought, and the other, wherein the half-plane is at rest. The first frame of reference is referred to as laboratory one.
In this frame of reference {x, y, z, t} the electromagnetic, harmonic plane wave

E i
= E0 eik(k̂·r−ct) cBi

= cB0 eik(k̂·r−ct) (1)
is propagating perpendicularly to the y axis and under the angle ξ , π < ξ < 2π , with respect to the x axis. The unit vector
k̂ in the direction of propagation and the radius vector are given by

k̂ = [cos ξ, 0, sin ξ ], r = [x, y, z]. (2)
Here, k, c and t stand for wave number, velocity of light and time, respectively. The incident wave is scattered by a perfectly
conducting half-plane, which is moving along the x direction with a constant velocity v (see Fig. 1). This velocity may take
values from zero to relativistic ones. It is assumed that the edge of the half-plane reaches x = 0 at the moment t = 0.

The other frame of reference {x′, y′, z ′, t ′} is chosen, wherein the half-plane is at rest. This frame is referred as stationary
one, and the half-plane is described by x′

≤ 0, z ′
= 0 in it.

Our goal is to find the resulting total electromagnetic field in the laboratory frame. Since the incident field is independent
of y coordinate and the half-plane is uniform along that direction, the problem here analysed is 2D.

3. The solving method

The idea of solving this problem is due to Einstein. The incident field is first Lorentz transformed from the laboratory to
stationary frame of reference, and the total field resulting from diffraction of the transformed incident field by the stationary
half-plane, is found. This field is then Lorentz transformed back to the laboratory frame of reference. In the literature the
method is referred to as Frame Hopping Method.



Download English Version:

https://daneshyari.com/en/article/8256985

Download Persian Version:

https://daneshyari.com/article/8256985

Daneshyari.com

https://daneshyari.com/en/article/8256985
https://daneshyari.com/article/8256985
https://daneshyari.com

