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h i g h l i g h t s

• The Green tensor of 2D elastodynamics and its hypersingular gradient are expressed as distributions.
• They are regularized by convolution with a source shape suitable to represent dislocation lines.
• The regularization amounts to an analytic continuation to imaginary times.
• A definite integral that gives access to fields emitted by non-uniformly moving line sources is deduced.
• The obtained closed-form expressions cover all velocity regimes, including faster-than-wave source motion.
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a b s t r a c t

The two-dimensional elastodynamicGreen tensor is the primary building block of solutions
of linear elasticity problems dealing with nonuniformly moving rectilinear line sources,
such as dislocations. Elastodynamic solutions for these problems involve derivatives of this
Green tensor, which stand as hypersingular kernels. These objects, well defined as distri-
butions, prove cumbersome to handle in practice. This paper, restricted to isotropic media,
examines some of their representations in the framework of distribution theory. A partic-
ularly convenient regularization of the Green tensor is introduced, that amounts to consid-
ering line sources of finitewidth. Technically, it is implemented by an analytic continuation
of the Green tensor to complex times. It is applied to the computation of regularized forms
of certain integrals of tensor character that involve the gradient of the Green tensor. These
integrals are fundamental to the computation of the elastodynamic fields in the problem
of nonuniformly moving dislocations. The obtained expressions indifferently cover cases
of subsonic, transonic, or supersonic motion. We observe that for faster-than-wave mo-
tion, one of the two branches of the Mach cone(s) displayed by the Cartesian components
of these tensor integrals is extinguished for some particular orientations of source velocity
vector.
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1. Introduction

The two-dimensional elastodynamic Green tensor [1] of the Navier equation is the primary building block of solutions
for linear elasticity problems involving nonuniformly moving rectilinear line sources, such as dislocations (e.g., [2,3]). Dis-
locations are the fundamental carriers of plastic deformation in crystalline materials [4–6]. Mathematically, a dislocation
stands as a discontinuity of the displacement field on its glide plane. This discontinuity stands as a boundary condition
in traditional methods of solution of continuum mechanics [7,8], or acts more explicitly as a singular source of elastic
field if the solution is tackled by means of Green functions [9]. In the latter approach, the elastodynamic solution for
the strain or stress fields involves taking convolution integrals of derivatives of the Green tensor by the source functions
[10,11].

Whereas the two-dimensional Green tensor itself is locally integrable, its derivatives are in general hypersingular ker-
nels [12], namely, kernels that cannot simply be regularized by means of a Cauchy principal-value requirement. Still, they
are fully legitimate objects within the theory of distributions, their apparent singularity being handled by introducing
Hadamard’s finite-part prescription [13–18]. From an operational standpoint, finite parts can ultimately be reduced by car-
rying out suitable integration by parts on convolution integrals [8]. Hypersingular kernels are commonly encountered in
situations involving static [19], as well as nonuniformly moving dislocations or cracks [20,21], notably in the context of
so-called boundary-element integral approaches [12,22,23], and because of their importance in practice, their handling is a
recurrent issue in wave physics problems [8,23,24].

In the two-dimensional setting, the dislocation line source is transverse to the (x, y)plane ofmotion, inwhich it reduces to
a point in the idealized case of a Volterra dislocation. In general, point sources lead to singular (infinite) fields at the source
position and at wave fronts, which poses some problems in numerical implementations [8]. However, infinite fields are
merely the hallmark of the breakdown of classical linear elasticity at the dislocation core. In reality, a physical dislocation
has a finite width, that can be measured in atomistic simulations or computed by means of specially devised nonlinear
models of the cohesive-zone type [25–27]. Also, dislocations of a finite width naturally arise in the framework of gradient
elasticity models (e.g., [28–32]).

Being of finite width is a necessary condition for sources to undergo supersonic motion (or faster-than-light-speed
motion in classical electrodynamics [24]). Indeed, faster-than-wave motions of point sources induce Mach or Cerenkov
cones with unrealistically infinite field strength [24]. For dislocations or cracks, faster-than-wave motion [33] has attracted
wide attention during the last decades [27,34–40]. Also, recent medical imaging techniques rely on shear-wave Mach cones
induced by a fast moving ultrasonic spot at the surface of human skin [41,42]. Thus, supersonic motion must be allowed
for in any comprehensive theory of radiation fields generated by moving sources. We should add that, quite generally, the
concept of a point source can hardly be avoided when no information about the physical nature of the singular source of
field is available. Then, Hadamard’s finite part regularization, or generalizations thereof, must be employed. We refer the
interested reader to Ref. [16] for a review of some recent progresses in this direction,motivated by the problem of relativistic
motion of a point particle in general relativity.

However, in the specific context of dislocation theory, convoluting the point source by an appropriate shape function of
finite width that represents the core provides a natural regularization of the relevant field integrals at the source location,
and at the wave fronts (includingMach cones), and allows one to investigate subsonic as well as supersonic motion without
the need to address these cases separately [43]. In many approaches to finite-size (so-called smeared-out) dislocations [44],
core shape functions are often found or assumed of power-law decay in the space variable [26,45,46]. On the other hand, an
exponentially-decaying shape function with cut-off characteristic length is produced by the theory of gradient elasticity of
the Helmholtz type (e.g., [31,32]) where the convolution is naturally embedded within the Green function of the theory as
a consequence of the constitutive relations employed.

This paper introduces an alternative power-law-type way of regularizing the elastodynamic dislocation problem, which
tames all singularities of the fields in the whole (x, y) plane. While resembling certain means [46] currently employed to
regularize elastostatic fields in three-dimensional simulations [46,47] it will arise, however, from an immediate analytic
continuation of the Green tensor to complex values of the time variable, once the elastodynamic fundamental solutions
are written down as distributions. Simplicity of implementation is indeed a necessary requirement for use in dislocation-
dynamics simulations [8,46].

Section 2 reviews several different forms of the two-dimensional elastodynamic Green tensor of the Navier equation
for the material displacement in an isotropic medium, and its derivatives, which we express as distributions. Their regu-
larization is examined in Section 3, and applied in Section 4 to the computation of specific key definite integrals over time,
that enter the problem of sources undergoing a velocity jump from rest to an arbitrary constant velocity, in the plane-strain
and anti-plane-strain settings relevant to screw and edge dislocations, respectively. These key integrals – from which ex-
pressions of the strain and stress fields can be deduced [48] – lead, when employed for faster-than-wave source motion,
to Mach cones which we further analyze here in terms of distributions. The key integrals are obtained as a difference at
their time boundaries of non-trivial indefinite integrals. The latter can be used to address more general nonuniform source
motions since for numerical purposes, a nonuniform motion can in general be represented conveniently as a succession of
velocity jumps separating small time intervals of uniformmotion [27,49]. The full solution for the fields in this problemwill
be reported elsewhere [48]. A discussion (Section 5) closes the paper.
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