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h i g h l i g h t s

• Linear water wave model in an infinite, two-dimensional domain is studied.
• A general method for cloaking small bottom perturbations is developed.
• The approach consists of mathematical analysis with rigorous proofs.
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a b s t r a c t

We consider scattering of surface waves modeled by the linear water wave equation in
an unbounded two-dimensional domain of finite depth, at a given frequency and a given
incidence. Using asymptotic analysis for small perturbations of the bottom shape, we build
a fixed-point equation whose unique solution is a shape which cannot be detected by a
distant observer. The method works at any incidence except π/4.

© 2015 Published by Elsevier B.V.

1. Introduction

Related to the current progress in realizing artificial metamaterials, a great interest is devoted to different ways for
achieving the cloaking of an object, making it invisible for electromagnetic waves [1]. Of course, the same question can
be investigated for other types of waves, acoustic waves or water waves for instance. This has been already proved to work
experimentally [2,3]. If perfect invisibility, at all frequencies and for all incident waves, remains an unreachable dream,
some nice results can be obtained by considering only waves in a given frequency range. Going further, in the context of
waveguides, one can take benefit of the presence at a given frequency of only a finite number of propagating waves. In
other words, for a receiver located far from the perturbation, the echoes due to this later are resumed in a finite number of
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complex numbers, the so-called scattering coefficients. The question then reduces to proving the existence of perturbations
canceling these coefficients. This remark has been exploited successfully in [4] for two-dimensional acoustic waveguides.
However, it has been noticed that the method was rapidly deteriorating when increasing the frequency, related to the fact
that the number of propagatingmodes is an increasing function of the frequency. This partiallymotivated the present study,
where water waves are considered. Indeed, contrary to acoustic waveguides, there exists only one guided wave whatever
the frequency is. Some other differences between the cases of acoustics and water waves will be discussed later.

More precisely, we consider a water layer of finite depth d, and we aim to find geometric distortions of the bottomwhich
are not detectable, at a given frequency, by an observer located far from the distortion. Assuming that the perturbation of the
bottom is invariant in the horizontal direction x, the scattering by an incident surface wave reduces to a two-dimensional
problem set in the (y, z) cross-section of the fluid domain, with the frequency ω and the kx component of the wave vector
as parameters. We consider that the cloaking is obtained if the scattered field, due to the perturbation of the bottom, is
composed of evanescent modes, so that it decreases exponentially with the distance to the perturbation. Equivalently, it
means that the reflexion coefficient r and the transmission coefficient t (which are a priori complex numbers) are such that
r = 0 and t = 1. A possible approach to find a perturbation of the bottom satisfying such conditions is to use a numerical
algorithm of optimization. This has been done in [5] where the object to be cloaked is a vertical three-dimensional cylinder
and in [6] where submerged steps and horizontal plates are considered in two dimensions. Our contribution here is quite
different. On one hand, our results are weaker since we only get the invisibility for small perturbations of the bottom. But
this is counterbalanced by the two following nice properties:

1. First, we obtain a theoretical proof of existence of invisible perturbations, which is not the case in [5] or [6]. At the same
time, we prove the convergence of the fixed-point algorithm to this invisible profile.

2. Secondly, our method allows to some extent to design the main features of the perturbation, which is then only slightly
modulated by the algorithm in order to achieve the perfect cloaking.

Our technique for the construction of the invisible bottom profiles h is inspired by the technique used to prove the
enforced stability of trapped modes (or embedded eigenvalues) in [7,8]. More precisely, the method aims to build, for any
given small ε, a perturbation of the bottom whose amplitude is of order ε and which is completely invisible, in the sense
that the reflection r and the distortion of the transmission t − 1 satisfy r = t − 1 = 0. To do that, we search the profile of
the bottom perturbation h as a linear combination of a small number of given functions Hj. These functions have to fulfill
some orthogonality and normalization conditions, such that the coefficients of the linear combination solve a fixed-point
equation, which can be proved to be a contraction under appropriate conditions. More details will be given later, but let us
mention that one can build many different invisible profiles, by changing either the value of ε (smaller than some limiting
value) or by changing the functions Hj. We will show that the method works for all frequencies and all angles of incidence,
except the angle π/4, where the differential of r with respect to h is vanishing. Explaining this exception and getting rid of
this condition is an open question. A similar difficulty occurred in the case of acoustic waveguides, where it was not possible
to achieve t = 1 but only the weaker condition |t| = 1.

A limitation of the approach is that it allows to build only small invisible perturbations of the bottom, since the contraction
property is lost for large values of ε. A new idea is investigated in the present paper, to provide larger invisible perturbations.
It consists of applying the previous approach, replacing the initial straight bottomby some invisible profile. Namely, onemay
try to apply this result repeatedly to ‘‘cultivate’’ an invisible profile of large amplitude. Themethod becomes less explicit and
we are not able to prove that the degeneracy of the differential of the functional h −→ (r, 1 − t) can be avoided. However,
all the requirements are quite computable, and the perturbation analysis can help to develop numerical algorithms for
producing invisible perturbations of larger magnitude.

The outline of the paper is the following. In Section 2, we present the method to build invisible perturbations of a
straight bottom of small amplitudes. The next stepwhere the invisible profile itself is perturbedwhile preserving invisibility
is described in Section 3. The theoretical justifications of the asymptotic analysis used in Sections 2 and 3 are given in
Section 4. Somepossible extensions are finally discussed in the last section. For exampleweexplain how to create an invisible
perturbation of the bottom for a prescribed finite set of frequencies ω1, . . . , ωN or x-wave numbers k1, . . . , kJ .

2. Invisible perturbations of the bottom of small amplitude

We denote byΠ the two-dimensional strip R × (−d, 0) ∋ (y, z), which describes the cross-section of the water domain
with constant depth d. Then, for a given profile function h, we denote byΠh the cross-section of the perturbedwater domain,
defined as follows (see Fig. 1):

Πh
= {(y, z); y ∈ R, 0 > z > −d − h(y)}. (1)

The bottom perturbation is assumed to be invariant in x, smooth and situated in the region {|y| < L} for some L > 0, so that
h ∈ C∞

c (−L, L), which is the space of infinitely smooth functions with compact support in the segment (−L, L). The main
problem is formulated as finding profile functions h such that after passing over the obstacle, the surface wave of a given
frequency and a given incidence produces only an exponentially decaying scattered field.
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