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A B S T R A C T

Cancers are regarded as malignant proliferations of tumor cells present in many tissues and organs, which can
severely curtail the quality of human life. The potential of using plasma DNA for cancer detection has been
widely recognized, leading to the need of mapping the tissue-of-origin through the identification of somatic
mutations. With cutting-edge technologies, such as next-generation sequencing, numerous somatic mutations
have been identified, and the mutation signatures have been uncovered across different cancer types. However,
somatic mutations are not independent events in carcinogenesis but exert functional effects. In this study, we
applied a pan-cancer analysis to five types of cancers: (I) breast cancer (BRCA), (II) colorectal adenocarcinoma
(COADREAD), (III) head and neck squamous cell carcinoma (HNSC), (IV) kidney renal clear cell carcinoma
(KIRC), and (V) ovarian cancer (OV). Based on the mutated genes of patients suffering from one of the afore-
mentioned cancer types, patients they were encoded into a large number of numerical values based upon the
enrichment theory of gene ontology (GO) terms and the Kyoto Encyclopedia of Genes and Genomes (KEGG)
pathways. We analyzed these features with the Monte-Carlo Feature Selection (MCFS) method, followed by the
incremental feature selection (IFS) method to identify functional alteration features that could be used to build
the support vector machine (SVM)-based classifier for distinguishing the five types of cancers. Our results
showed that the optimal classifier with the selected 344 features had the highest Matthews correlation coeffi-
cient value of 0.523. Sixteen decision rules produced by the MCFS method can yield an overall accuracy of 0.498
for the classification of the five cancer types. Further analysis indicated that some of these features and rules
were supported by previous experiments. This study not only presents a new approach to mapping the tissue-of-
origin for cancer detection but also unveils the specific functional alterations of each cancer type, providing
insight into cancer-specific functional aberrations as potential therapeutic targets. This article is part of a Special
Issue entitled: Accelerating Precision Medicine through Genetic and Genomic Big Data Analysis edited by
Yudong Cai & Tao Huang.

1. Introduction

Cancer is regarded as a malignant proliferative disease that can
occur in many tissues and organs in humans [1,2]. As a systemic dis-
ease, the symptoms of cancer are not restricted to the sites of tumor-
igenesis [2]. The proliferative, invasive and metastatic characteristics of
cancer have been associated with a high mortality rates [3–5]. In 2012,
14.1 million new cancer cases were diagnosed, and at the same time,
approximately 8.2 million people died of such disease. Based on sta-
tistical prediction, by 2025, more than 19.3 million people may be
diagnosed with cancer, demonstrating that cancer is one of the major
threats to human life [6].

It is well known that the early diagnosis of cancers can greatly

increase the chances of successful treatment and survival of patients.
Cell-free DNA (cfDNA) has been recognized as a potential non-invasive
cancer biomarker since the discovery of TP53 mutations in the urinary
sediments of bladder cancer patients and the detection of mutated RAS
gene in the blood of cancer patients [7–9]. The liquid biopsy of cfDNA
in plasma or serum could avoid the need for tumor tissue biopsies and
allow the cfDNA to be monitored during the progression and the
treatment of cancers. Information about the tissue-of-origin from the
liquid biopsies are important for locating and diagnosing the primary
cancers early but require knowledge of the cancer-specific or tissue-
specific variations. For example, tissue-specific DNA methylation, cell-
specific nucleosome occupancy pattern and cancer-specific mutation
signatures are now available to characterize these biopsies [10–14].
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Meanwhile, specific mutation patterns have been identified as genetic
characteristics to identify tumor types. For example, ALK gene re-
arrangement and its over-expression have been confirmed to be asso-
ciated with non-small cell lung cancer and anaplastic large cell lym-
phoma [15]. Therefore, ALK gene and its expression products may serve
as a core biomarker for the diagnostic and prognostic evaluation of
these two cancer types [16]. The identification and clinical application
of confirmed tumor genetic markers (mutation patterns) provide a new
method to diagnose tumor types and distinguish them from each other.
However, these mutated genes or gene products do not function in
isolation but interact with each other in cellular networks and processes
[17]. Thus, it is a more robust approach to identify the core unique
characteristics of various tumor types at the level of biological pro-
cesses rather than mutation signatures.

Unlike genes that are represented by specific gene names and
symbols in computational biology, the biological processes are de-
scribed by multiple bioinformatics initiatives based upon different point
cuts. There are two core bioinformatics initiatives that contribute to the
identification and description of functional biological processes and
pathways in humans and across different species: gene ontology (GO)
terms and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathways
[18,19]. GO compiles bioinformatics initiative describing genes and
gene products by clustering their interactions with each other and an-
notating their respective contribution to certain biological processes
[18,20]. In addition, the KEGG pathways provide a new approach to
investigate biological processes. KEGG pathway terms cluster the
functional genes into identified functional pathways, reflecting the real
contribution of such genes to the living organism [19]. Therefore,
during the identification of core unique biological factors in different
tumor types, both GO terms and KEGG terms evaluate the differences
from the point of view of integrated biological processes in a more
comprehensive and convincing manner.

In this study, we applied a pan-cancer analysis to five different types
of cancers: (I) breast cancer (BRCA), (II) colorectal adenocarcinoma
(COADREAD), (III) head and neck squamous cell carcinoma (HNSC),
(IV) kidney renal clear cell carcinoma (KIRC), and (V) ovarian cancer
(OV). We obtained the somatic mutations found in these five cancer
types from TCGA (The Cancer Genome Atlas) through the cBio cancer
genomics portal [21–23]. Based upon the obtained mutated genes,
patients with each aforementioned cancer type were encoded into a
large number of numerical values using the enrichment theory of GO
terms and the KEGG pathway [24–27]. The Monte-Carlo Feature Se-
lection (MCFS) method [28] was adopted to analyze the GO term fea-
tures and KEGG pathway features, yielding a feature list and sixteen
decision rules. This feature list was used for the incremental feature
selection (IFS) method to discover the most appropriate features for
building the optimal classifier using the classic machine learning al-
gorithm, support vector machine (SVM) [29,30], which could distin-
guish the five types of cancers with the best performance. This optimal
SVM-based classifier provided a Matthews correlation coefficient value
of 0.523 and an overall accuracy of 0.619. With regard to the sixteen
decision rules, they can provide more clues to understanding the spe-
cific functional alterations of each cancer type than the classifier
mentioned above, although it yielded a low overall accuracy of 0.498.
Finally, important GO terms and KEGG pathways involved in the de-
cision rules and optimal SVM-based classifier were extensively analyzed
according to previous experimental results. Our study not only shed
light on the mapping of the tissue-of-origin for cancer detection but also
classified the functional alteration signatures of the five types of can-
cers, providing insight into the cancer-specific functional aberrations as
potential therapeutic targets.

2. Materials and methods

2.1. Materials

The mutational data in different types of cancers were downloaded
from the cBioPortal for Cancer Genomics (http://cbio.mskcc.org/
cancergenomics/pancan_tcga/) [23], which contained the mutations
in eleven cancer types. Because many cancer types only have very few
samples compared with others, cancer types with less than 300 samples
were excluded. The remaining five major cancer types included (I)
BRCA, (II) COADREAD, (III) HNSC, (IV) KIRC, and (V) OV. The num-
bers of samples for these five cancer types are listed in Table 1.

2.2. The functional profiles of mutations

There have been many ways to describe a protein, such as the
protein sequence based features [31] and secondary structure based
features [32]. But the most direct one was the functional annotation of
a protein from databases like GO and KEGG. There were limitations of
direct binary annotation of whether a protein had a specific function.
Such binary functional features will be very sensitive to the mis-anno-
tations in the database. Therefore, the enrichment scores which con-
sidered the significance of overlap between a gene set and a GO or
KEGG function in the genome background, will be more robust and give
a quantitative measurement of function rather than a binary qualitative
measurement [33]. In this study, we used the GO and KEGG enrichment
scores [24–27] of mutated genes to measure the similarity of the
functional effects caused by mutations between cancer patients.

2.2.1. GO enrichment score
For a given cancer patient p and one GO term GOj, let GGO denote

the set of annotated genes of GOj and G(p) denote the set of mutated
genes of cancer patient p. The GO enrichment score of p and GOj is
defined as the hypergeometric test P value [24–27,34–37] on G(p) and
GGO, which can be computed with the following equation:
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where N and M denote the total number of human genes and the
number of genes in GGO, respectively; n and m represent the number of
mutated genes in G(p) and the number of genes both in G(p) and GGO,
respectively. The higher the score, the stronger the functional effects of
mutations in patient p on the GO term GOj are. Overall, 19,997 GO
terms were used in this study, inducing 19,997 GO enrichment scores
for each cancer patient.

2.2.2. KEGG enrichment score
A similar approach was adopted to define the KEGG enrichment

score, which can measure the associations between patients and KEGG
pathways. Let GKEGG denote the set of annotated genes of one KEGG
pathway Kj. The KEGG enrichment score of p and Kj is defined as the
hypergeometric test P value [24–27,34–37] on G(p) and GKEGG. This
score can be calculated using the following equation:

Table 1
The number of samples in each of the five cancer types.

Cancer type Full name Number of samples

BRCA Breast cancer 513
COADREAD Colorectal adenocarcinoma 499
HNSC Head and neck squamous cell carcinoma 306
KIRC Kidney renal clear cell carcinoma 473
OV Ovarian cancer 456
Total – 2247
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