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Abstract

In this paper, steady-state vibrations are studied for the state of generalized plane strain in a linear piezoelectric med-
ium. The fundamental boundary value problems are stated for vibrations in a prismatic piezoelectric body with arbitrary
cross-section composed of material with the more general, tetragonal �4, symmetry . Along with general theory, we present
some other useful results concerning the behavior of the matrix of fundamental solutions. The conditions for the critical
values of the field quantities on the boundary are derived.
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1. Introduction

Modern developments of micro-electrical–mechanical systems, miniaturized power sources and other
devices, for example, piezomotors have renewed interest in the fundamental theory of linear piezoelectric
materials and their applications [6,7,11–13,15,16]. The first publications on the applications of piezoelectricity
and the development of the theory of vibrations in piezoelectric solids began to appear in the early part of the
twentieth century [1,2]. The use of piezoelectric materials in micro power systems produces significant advan-
tages due to their light weight, superior energy conversion efficiency and energy density [19]. Since a variety of
piezoelectric devices operates on resonant frequencies such as piezoelectric transformers, actuators, resonators
etc [3,5,20], the investigation of the nature of steady-state vibrations is of great importance. In [23] some prob-
lems of vibrations of piezoelectric plates were investigated. To this end, in this paper, we use boundary integral
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equation methods to establish the solvability of boundary value problems for the steady-state vibrations of a
prismatic piezoelectric body of smooth yet arbitrary cross-section. As a complementary result of this method
the conditions for the critical values of the field quantities on the boundary are obtained.

2. Basic equations

In what follows Greek and Latin indices take the values 1, 2, and 1, 2, 3, respectively, the convention of
summation over repeated indices is understood, Mm�n is the space of (m · n)-matrices, a superscript T indi-
cates matrix transposition and (. . .),a � o(. . .)/oxa. For A 2Mm�n we denote the mth row of the element A

by A(m) and the nth column as A(n). Also, if X is a space of scalar functions and v is a matrix, v 2 X means
that every component of v belongs to X.

Let X be an infinite cylinder X ¼ fx 2 R3 : ðx1; x2Þ 2 Sþg where S+ is a simply-connected domain of R2 such
that its boundary oS is sufficiently smooth. Let X be occupied by a homogeneous anisotropic linearly piezo-
electric material. The equations of motion and charge equation in the case of plane piezoelectricity (general-
ized plane strain) are given by [8]:

Ciakbuk;ab þ emia/;ma ¼ q€ui � fi;

� eciaui;ca þ �ab/;ab ¼ �q;
ð2:1Þ

where ui are the components of the mechanical displacement vector field, fi are components of external force, q

is the external charge, / is the electric potential such that the electric field E is given by E = �$/, and Ciakb,
emia, �ab are, respectively, the elastic, piezoelectric and electric permittivity constants of the material. Without
loss of generality we will assume that fi and q are zero since we can always construct the solution of (2.1) as a
sum of the solution of homogeneous system and a particular solution of the form [10,21,22]:

~uðxÞ ¼ 1

2

Z
Sþ

Cðx; y;xÞF ðyÞdy;

where C(x,y,x) is the matrix of fundamental solutions corresponding to the homogeneous system (2.1) and
F(x) = (f1, f2, f3,�q). In the case of steady-state vibrations we expect the displacement components and electric
potential to be of the form:

uiðx; tÞ ¼ ReðuiðxÞeixtÞ; uiðxÞ ¼ uð1Þi ðxÞ þ iuð2Þi ðxÞ;
/ðx; tÞ ¼ Reð/ðxÞeixtÞ; /ðxÞ ¼ /ð1ÞðxÞ þ i/ð2ÞðxÞ; x ¼ ðx1; x2Þ:

ð2:2Þ

Substitution of (2.2) in (2.1) gives:

Ciakbuk;ab þ emia/;ma þ qx2ui ¼ 0;

� eciaui;ca þ �ab/;ab ¼ 0:
ð2:3Þ

Eq. (2.3) represent the governing system of equations describing steady-state vibrations in the context of (gen-
eralized) plane piezoelectricity. The appropriate boundary conditions for (2.3) are given by [8]:

ðCiakbuk;b þ emia/;mÞna ¼ t�i ðxÞ;
�ðeciau;c � �ab/;bÞna ¼ D�ðxÞ on oS

(
ð2:4Þ

in the case of the Neumann problem, and

uiðxÞ ¼ u�i ðxÞ;
/ðxÞ ¼ /�ðxÞ on oS

(
ð2:5Þ

in the case of the Dirichlet problem. Here D*, t�i , u�i , /* are prescribed functions on oS and na are components
of the outward normal n to oS. In the particular case of tetragonal �4 material [18] the system (2.3) becomes
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