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A B S T R A C T

The empirical distribution of the eigenvalues of the matrix XXT divided by its trace is evaluated,

where X is a randomHankel matrix. The distribution of eigenvalues for symmetric and nonsym-

metric distributions is assessed with various criteria. This yields several important properties

with broad application, particularly for noise reduction and filtering in signal processing and

time series analysis.

ª 2014 Production and hosting by Elsevier B.V. on behalf of Cairo University.

Introduction

Consider a one-dimensional series YN = (y1, . . . , yN) of length
N. Mapping this series into a sequence of lagged vectors with
size L, X1, . . . , XK, with Xi = (y1, . . ., yi+L�1)

T e RL provides
the trajectory matrix X ¼ ðxi;jÞL;Ki;j¼1, where L(2 6 L 6 N/2) is

the window length and K= N � L + 1;

X ¼ ½X1; . . . ;XK� ¼ ðxi;jÞL;Ki;j¼1 ¼

y1 y2 . . . yK
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:

The trajectory matrix X is a Hankel matrix as has equal ele-
ments on the antidiagonals i+ j= const. The importance of
X and its corresponding singular values can be seen in different

areas including time series analysis [1,2], biomedical signal pro-
cessing [3,4], mathematics [5], econometrics [6] and physics [7].
However, the distribution of eigenvalues/singular values and

their closed form has not been studied adequately [8]. For
recent work on the generalized eigenvalues of Hankel random
matrices see Naronic article [9]. For the eigenvalue distribu-

tions of beta-Wishart matrices which is a special case of ran-
dom matrix see Edelman and Plamen study [10].
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Furthermore, such Hankel matrix X naturally appears in
multivariate analysis and signal processing, particularly in Sin-
gular Spectrum Analysis, where each of it column represents

the L-lagged vector of observations in R
L [11,12]. Accordingly,

the aim was to determine the accurate dimension of the system,
that is the smallest dimension with which the filtered series is

reconstructed from a noisy signal. In this case, the main anal-
ysis is based on the study of the eigenvalues and corresponding
eigenvectors. If the signal component dominates the noise

component, then the eigenvalues of the random matrix X have
a few large eigenvalues and many small ones, suggesting that
the variations in the data takes place mainly in the eigenspace
corresponding to these few large eigenvalues. Note that the

number of correct singular values, r, for filtering and noise
reduction, is increased with the increased L which makes the
comparison among different choices (L, r) more difficult. Fur-

thermore, despite the fact that several approaches have been
proposed to identify the values of r [13], due to a lack of sub-
stantial theoretical results, none of them consider the distribu-

tion of singular values of X. Here, we study the empirical
distribution of singular values of X for different situations con-
sidering various criteria. Accordingly, the theoretical results on

the eigenvalues of XXT divided by its trace with a new view is
considered in Main results. The empirical results using simu-
lated data are presented in The empirical distribution of fi.
Some conclusions and recommendations for future research

are drawn in Conclusion.

Main results

The singular values of X are the square root of the eigenvalues
of the L by Lmatrix XXT, where XT is the conjugate transpose.
For a fixed value of L and a series with length N, the trace of

matrix XX
T, trðXXTÞ ¼ kXk2F ¼

PL
i¼1ki, where kkF denotes the

Frobenius norm, and kiði ¼ 1; . . . ;LÞ are the eigenvalues of
XXT. Note that the increase of sample size N leads to the

increase of ki which makes the situation more complex. To
overcome this issue, we divide XXT by its trace
ðXXT=

PL
i¼1kiÞ, which provides the following properties.

Proposition 1. Let f1, . . . , fL denote eigenvalues of the matrix

ðXXT=
PL

i¼1kiÞ, where X is a Hankel trajectory matrix with L
rows, and kiði ¼ 1; . . . ;LÞ are the eigenvalues of XXT. Thus, we
have the following properties:

1. 0 6 fL 6 . . . 6 f1 6 1,

2.
PL

i¼1fi ¼ 1,
3. f1 P 1/L,
4. fL 6 1/L.

Proof. The first two properties are simply obtained from
matrix algebra and thus not provided here. The outermost

inequalities are attained as equalities when, for example,
yi = 1 for all i. To prove the third property, the first two
properties are used as follows. The second part confirms
f1 + f2 + . . . + fL = 1. Thus, using the first property, f1 P fi
(i = 2, . . . , L), we obtain f1 + f1 + . . . + f1 = Lf1
P 1) f1 P 1/L. Similarly, for the fourth property, it is
straightforward to show that fL + fL + . . . + fL = LfL
6 1) fL 6 1/L, since fL 6 fi(i= 1, 2, . . . , L � 1), and

P
fi = 1. Note also that if yL = 1 and yi = 0 for i „ L then

f1 = . . ., fL = 1/L. Rational number theory can also aid us to
provide more informative inequalities (for more information
see [14]). h

Let us now evaluate the empirical distribution of fi. In
doing so, a series of length N from different distributions, is

generated m times. For consistency and comparability of the
results, a fixed value of L, here 10, is used for all examples
and case studies throughout the paper. For point estimation
and comparing the mean value of eigenvalues, the average of

each eigenvalue in m runs is used; �fi as defined before,
i= 1, . . . , L, and m is the number of the simulated series. Here
we consider eight different cases that can be seen in real life

examples:

(a) White Noise; WN.

(b) Uniform distribution with mean zero; U(�a, a).
(c) Uniform distribution; U(0, a).
(d) Exponential distribution; Exp(a).
(e) b + Exp(a).
(f) b + t.
(g) Sine wave series; sin(u).
(h) b + sin(u) + sin(#),

where a = 1, b = 2, u = 2pt/12, #= 2pt/5, and t is the time
which is used to generate the linear trend series.

The effect of N

In this section, we consider the effect of the sample size, N on
�fi. Fig. 1 demonstrates �fi for different values of N for cases
((a)–(c)) considered in this study. In Fig. 1, �fi has a decreasing
pattern for different values of N. It can be seen that, for a large

N, �fi fi 1/10 for cases (a) and (b). Thus, increasing N clearly
affects the values of �fi for the white noise (a) and uniform dis-
tribution (b). However, there is no obvious effect on fi for
other cases. For example, for case (c), �f1 is approximately

equal to 0.8 for different values of N, and �fi–1 is less than
1/10 (see Fig. 1 (right)).

Although the pattern of �fi for the uniform distribution (c) is

similar to exponential case (d), but for case (c), �f1 is greater
than �f1 comparing to the case (d), whilst other �fi are smaller.
It has been observed that �fi has similar patterns for cases

((c), . . . , (f)). The values of �fi for cases (a) and (b), where YN

generated from a symmetric distribution, are approximately
the same. The results clearly indicate that increasing N does
not have a significant influence on the mean of �fi for all cases
except (a) and (b). As a result, if YN is generated from WN or
U(�1,1), then increasing N will affect the value of �fi
significantly.

The patterns of �fi

Let us now consider the patterns of �fi for N= 105. For the

white noise distribution (a) and trend series (f), �fi has different
pattern. It is obvious that, for the white noise series, �fi con-
verges asymptotically to 1/10, whilst for the trend series �f1 is

approximately equal to 1, and �fi–1 tends to zero. Similar
results were obtained for the uniform distributions, cases (b)
and (c), respectively.
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