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A B S T R A C T

This paper proposes an accurate, computationally efficient, and spectrum-free formulation of

the heat diffusion smoothing on 3D shapes, represented as triangle meshes. The idea behind

our approach is to apply a ðr; rÞ-degree Padé–Chebyshev rational approximation to the solution

of the heat diffusion equation. The proposed formulation is equivalent to solve r sparse, sym-

metric linear systems, is free of user-defined parameters, and is robust to surface discretization.

We also discuss a simple criterion to select the time parameter that provides the best compro-

mise between approximation accuracy and smoothness of the solution. Finally, our experiments

on anatomical data show that the spectrum-free approach greatly reduces the computational

cost and guarantees a higher approximation accuracy than previous work.

ª 2014 Production and hosting by Elsevier B.V. on behalf of Cairo University.

Introduction

In medical applications, the heat kernel is central in diffusion
filtering and smoothing of images [1–6], 3D shapes [7,8], and
anatomical surfaces [9,10]. However, the computational cost

for the evaluation of the heat kernel is the main bottleneck
for processing both surfaces and volumetric data; in fact, it
takes from OðnÞ to Oðn3Þ time on a data set sampled with n

points, according to the sparsity of the Laplacian matrix. This
aspect becomes more evident for medical data, which are now-
adays acquired by PET, MRI systems and whose resolution is

constantly increasing with the improvement of the underlying
imaging protocols and hardware.

To overcome the time-consuming computation of the

Laplacian spectrum on large data sets (Section ‘Previous
work’), the heat kernel has been approximated by prolongat-
ing its values evaluated on a sub-sampling of the input surface

[11–13]; applying multi-resolution decompositions [14] or a
rational approximation of the exponential representation of
the heat kernel [15]; and considering the contribution of the
eigenvectors related to smaller eigenvalues. The heat equation

has been solved through explicit [16] or backward [17,18] Euler
methods, whose solution no more satisfies the diffusion prob-
lem. Further approaches apply a Krylov subspace projection

[19], which becomes computationally expensive when the
dimension of the Krylov space increases, still remaining much
lower than n.

This paper proposes an accurate, computationally efficient,
and spectrum-free evaluation of the diffusive smoothing on 3D
shapes, represented as polygonal meshes. The idea behind our

approach (Section ‘Discrete heat diffusion smoothing’) is to
apply the ðr; rÞ-degree Padé–Chebyshev rational polynomial
approximation of the exponential map to the solution of the
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heat equation. This spectrum-free formulation converts the
heat equation to a set of sparse, symmetric linear systems and
the resulting computational scheme is independent of the eval-

uation of the Laplacian spectrum, the selection of a specific
subset of eigenpairs, and multi-resolutive prolongation opera-
tors. Our approach has a linear computational cost, is free of

user-defined parameters, and works with sparse, symmetric,
well-conditioned matrices. Since the computation is mainly
based on numerical linear algebra, our method can be applied

to any class of Laplacian weights and any data representation
(e.g., 3D shapes, multi-dimensional data), thus overcoming
the ambiguous definition of multi-resolutive and prolongation
operators on point-sampled or non-manifold surfaces. Bypass-

ing the computation of the eigenvectors related to small eigen-
values, which are necessary to correctly recover local features of
the input shape or signal, the spectrum-free computation is

robust with respect to data discretization. As a result, it prop-
erly encodes local and global features of the input data in the
heat diffusion kernel. For any data representation and Lapla-

cian weights, the accuracy of the heat smoothing computed
through the Padé–Chebyshev approximation is lower than
10�r, where r :¼ 5; 7 is the degree of the rational polynomial,

and can be further reduced by slightly increasing r. Finally
(Section ‘Results and Discussion’), our experiments on surfaces
and volumes representing anatomical data show that the spec-
trum-free approach greatly reduces the computational cost

(from 32 up to 164 times) and guarantees a higher approxima-
tion accuracy than previous work.

Previous work

Let us consider the heat equation ð@t þ DÞFð�; tÞ ¼ 0,
Fð�; 0Þ ¼ f, on a closed, connected manifold N of R3, where

f : N ! R defines the initial condition on M. The solution
to the heat equation ð@t þ DÞFðp; tÞ ¼ 0, Fð�; 0Þ ¼ f, is com-
puted as the convolution Fðp; tÞ :¼ Ktðp; �ÞH between the ini-

tial condition f and the heat kernel Ktðp; qÞ :¼
Pþ1

n¼0 expð�kntÞ
/nðpÞ/nðqÞ. Here, fðkn;/nÞg

þ1
n¼0 is the Laplacian eigensystem

D/n ¼ kn/n, kn 6 knþ1.

The heat equation is solved through its FEM formulation
[20] on a discrete surface M (e.g., triangle mesh, point set)
of N . Indicating with eL the Laplacian matrix, which discretiz-
es the Laplace–Beltrami operator onM, the ‘‘power’’ method

applies the identity ðKt=mÞm ¼ Kt, where m is chosen in such a
way that t=m is sufficiently small to guarantee that the approx-
imation Kt=m � ðI� t

m
eLÞ is accurate. Here, I is the identity

matrix. However, the selection of m and its effect on the
approximation accuracy cannot be estimated a-priori. In
[17,18], the solution to the heat equation is computed through

the Euler backward method ðteL þ IÞFkþ1ðtÞ ¼ FkðtÞ, F0 ¼ f.
The resulting functions are over-smoothed and converge to a
constant map, as k! þ1. Krylov subspace projection [19],
which replaces the Laplacian matrix with a full coefficient

matrix of smaller size, has computational and memory bottle-
necks when the dimension k of the Krylov space increases, still
remaining much lower than n (e.g., k � 5 K).

Once the Laplacian matrix has been computed, we evaluate
its spectrum and approximate the heat kernel by considering
the contribution of the Laplacian eigenvectors related to smal-

ler eigenvalues, which are computed in superlinear time [21].
Such an approximation is accurate only if the exponential filter

decays fast (e.g., large values of time). Otherwise, a larger
number of eigenpairs is needed and the resulting computa-
tional cost varies from Oðkn2Þ to Oðn3Þ time, according to

the sparsity of the Laplacian matrix. Furthermore, the number
of eigenpairs is heuristically selected and its effect on the result-
ing approximation accuracy cannot be estimated without com-

puting the whole spectrum. Finally, we can apply multi-
resolution prolongation operators [13] and numerical schemes
based on the Padé–Chebyshev polynomial [22,15]. However,

previous work has not addressed this extension, convergence
results, and the selection of the optimal scale.

Discrete heat diffusion smoothing

Let us discretize the input shape as a triangle mesh M, with
vertices P :¼ fpig

n
i¼1, which is the output of a 3D scanning

device or a segmentation of a MRI acquisition of an anatom-
ical structure. Let eL :¼ B�1L be the Laplacian matrix, where
L is a symmetric, positive semi-definite matrix and B is a sym-
metric and positive definite matrix. On triangle meshes, L is the

Laplacian matrix with cotangent weights [23,24] or associated
with the Gaussian kernel [25], and B is the mass matrix of the
Voronoi [18] or triangle [26] areas. For any class of weights,

the Laplacian matrix eL is uniquely defined by the couple
ðL;BÞ and is associated to the generalized eigensystem ðX;KÞ
such that

LX ¼ BXK; X>BX ¼ I;

X :¼ ½x1; . . . ; xn�; K :¼ diag ðkiÞni¼1;

(
ð1Þ

where X and K are the eigenvectors’ and eigenvalues’ matrices.
From the relation (1), we get the identities
B�1L ¼ XKX�1 ¼ XKX>B and

ðB�1LÞi ¼ ðXKX>BÞi ¼ XKðX>BXÞ . . . ðX>BXÞKX>B

¼ XKiX>B; i 2 N: ð2Þ

Then, the spectral representation of the heat kernel is

Kt ¼ expð�teLÞ ¼Xþ1
i¼0

ð�tB�1LÞi

i!
¼ð2ÞXDtX

>B;

Dt :¼ diag expð�kitÞð Þni¼1:

8><>: ð3Þ

For a signal f :M! R, f :¼ ðfðpiÞÞ
n
i¼1, sampled at P, the

solution FðtÞ ¼ Ktf, FðtÞ :¼ ðFðpi; tÞÞ
n
i¼1, to the heat equation

ð@t þ eLÞFðtÞ ¼ 0, Fð0Þ ¼ f, is achieved by multiplying the heat

kernel matrix Kt :¼ expð�teLÞ with the initial condition f.
Applying the Padé–Chebyshev approximation to the exponen-
tial of the Laplacian matrix in Eq. (3), we get

expð�teLÞ � a0Iþ
Xr
i¼1

aið�teL � hiIÞ
�1
;

Ktf � a0fþ
Xr
i¼1

aiðtLþ hiBÞ�1Bf ¼ a0fþ
Xr
i¼1

gi;

8>>>><>>>>: ð4Þ

and the vector Ktf is the sum of the solutions of r sparse linear
systems

ðtLþ hiBÞgi ¼ �aiBf; i ¼ 1; . . . ; r: ð5Þ

We briefly recall that the weights ðaiÞri¼1 and nodes ðhiÞri¼1 of the
Padé–Chebyshev approximation (4) are precomputed for any
polynomial degree [27]. Each vector gi is calculated as a mini-
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