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A B S T R A C T

In this article, numerical study for the fractional Cable equation which is fundamental equations

for modeling neuronal dynamics is introduced by using weighted average of finite difference

methods. The stability analysis of the proposed methods is given by a recently proposed proce-

dure similar to the standard John von Neumann stability analysis. A simple and an accurate

stability criterion valid for different discretization schemes of the fractional derivative and arbi-

trary weight factor is introduced and checked numerically. Numerical results, figures, and com-

parisons have been presented to confirm the theoretical results and efficiency of the proposed

method.

ª 2013 Cairo University. Production and hosting by Elsevier B.V. All rights reserved.

Introduction

The Cable equation is one of the most fundamental equations
for modeling neuronal dynamics. Due to its significant devia-
tion from the dynamics of Brownian motion, the anomalous

diffusion in biological systems cannot be adequately described
by the traditional Nernst–Planck equation or its simplification,
the Cable equation. Very recently, a modified Cable equation

was introduced for modeling the anomalous diffusion in spiny

neuronal dendrites [1]. The resulting governing equation, the

so-called fractional Cable equation, which is similar to the tra-
ditional Cable equation except that the order of derivative with
respect to the space and/or time is fractional.

Also, the proposed fractional Cable equation model is better
than the standard integer Cable equation, since the fractional
derivative can describe the history of the state in all intervals,

for more details see [1,2] and the references cited therein.
The main aim of this work is to solve such this equation

numerically by an efficient numerical method, fractional
weighted average finite difference method (FWA–FDM).

In recent years, considerable interest in fractional calculus
has been stimulated by the applications that this calculus finds
in numerical analysis and different areas of physics and engi-

neering, possibly including fractal phenomena. The applica-
tions range from control theory to transport problems in
fractal structures, from relaxation phenomena in disordered
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media to anomalous reaction kinetics of subdiffusive reagents
[2,3]. Fractional differential equations (FDEs) have been of
considerable interest in the literatures, see for example [4–13]
and the references cited therein, the topic has received a great

deal of attention especially in the fields of viscoelastic materials
[14], control theory [15], advection and dispersion of solutes in
natural porous or fractured media [16], anomalous diffusion,

signal processing and image denoising/filtering [17].
In this section, the definitions of the Riemann–Liouville

and the Grünwald–Letnikov fractional derivatives are given

as follows:

Definition 1. The Riemann–Liouville derivative of order a of
the function y(x) is defined by

Da
xyðxÞ ¼

1

Cðn� aÞ
dn

dxn

Z x

0

yðsÞ
ðx� sÞa�nþ1

ds; x > 0; ð1Þ

where n is the smallest integer exceeding a and C (.) is the Gam-
ma function. If a ¼ n 2 N, then (1) coincides with the classical

nth derivative y(n)(x).

Definition 2. The Grünwald–Letnikov definition for the frac-
tional derivatives of order a > 0of the function y(x) is defined by

DayðxÞ ¼ lim
h!0
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where x
h
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means the integer part of x

h
and w

ðaÞ
k are the normal-

ized Grünwald weights which are defined by w
ðaÞ
k ¼

ð�1Þk a
k

� �
.

The Grünwald–Letnikov definition is simply a generaliza-

tion of the ordinary discretization formula for integer order
derivatives. The Riemann–Liouville and the Grünwald–
Letnikov approaches coincide under relatively weak

conditions; if y(x) is continuous and y0(x) is integrable in the
interval [0,x], then for every order 0 < a < 1 both the
Riemann–Liouville and the Grünwald–Letnikov derivatives

exist and coincide for any value inside the interval [0,x]. This
fact of fractional calculus ensures the consistency of both
definitions for most physical applications, where the functions

are expected to be sufficiently smooth [15,18].

The plan of the paper is as follows: In the second section,

some fractional formulae and some discrete versions of the
fractional derivative are given. Also, the FWA–FDM is
developed. In the third section, we study the stability and the

accuracy of the presented method. In section ’’Numerical
results’’ numerical solutions and exact analytical solutions of a
typical fractional Cable problem are compared. The paper
ends with some conclusions in section ’’Conclusion and

remarks.’’

We consider the initial-boundary value problem of the

fractional Cable equation which is usually written in the
following way

utðx; tÞ ¼D1�b
t uxxðx; tÞ � lD1�a

t uðx; tÞ; a < x < b;

0 < t 6 T; ð3Þ

where 0 < a, b 6 1, l is a constant and D1�c
t is the fractional

derivative defined by the Riemann–Liouville operator of order
1 � c, where c = a, b. Under the zero boundary conditions

Table 1 The absolute error of the numerical solution of Eq.

(35).

x The absolute error

0.1 0.3063 · 10�3

0.2 0.5826 · 10�3

0.3 0.8019 · 10�3

0.4 0.9427 · 10�3

0.5 0.9912 · 10�3

0.6 0.9427 · 10�3

0.7 0.8019 · 10�3

0.8 0.5826 · 10�3

0.9 0.3063 · 10�3

Fig. 1 The behavior of the exact solution and the numerical

solution of (35) at k = 0 for a ¼ 0:2;b ¼ 0:7;Dx ¼ 1
100
;Dt ¼ 1

40
,

with T = 2.

Fig. 2 The behavior of the exact solution and the numerical

solution of (35) at k = 0.5 for a ¼ 0:1;b ¼ 0:3;Dx ¼ 1
150
;Dt ¼ 1

10
,

with T = 0.5.
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