
Contents lists available at ScienceDirect

Experimental Gerontology

journal homepage: www.elsevier.com/locate/expgero

Review

Unifying aging and frailty through complex dynamical networks

Andrew D. Rutenberga, Arnold B. Mitnitskib,⁎, Spencer G. Farrella, Kenneth Rockwoodb,c

a Department of Physics and Atmospheric Science, Dalhousie University, Halifax, Nova Scotia B3H 4R2, Canada
b Department of Medicine, Dalhousie University, Halifax, Nova Scotia B3H 2Y9, Canada
c Division of Geriatric Medicine, Dalhousie University, Halifax, Nova Scotia B3H 2E1, Canada

A R T I C L E I N F O

Keywords:
Aging
Frailty
Mortality
Complex network
Computational model
Scale-free network

A B S T R A C T

To explore the mechanistic relationships between aging, frailty and mortality, we developed a computational
model in which possible health attributes are represented by the nodes of a complex network, with the con-
nections showing a scale-free distribution. Each node can be either damaged (i.e. a deficit) or undamaged.
Damage of connected nodes facilitates local damage and makes local recovery more difficult. Our model de-
monstrates the known patterns of frailty and mortality without any assumption of programmed aging. It helps us
to understand how the observed maximum of the frailty index (FI) might arise. The model facilitates an initial
understanding of how local damage caused by random perturbations propagates through a dynamic network of
interconnected nodes. Very large model populations (here, 10 million individuals followed continuously) allow
us to exploit new analytic tools, including information theory, showing, for example that highly connected nodes
are more informative than less connected nodes. This model permits a better understanding of factors that
influence the health trajectories of individuals.

1. Introduction

Aging is the cumulative effect of degradation occurring at every
level of the organism. One consequence of human aging is an ex-
ponentially accelerating mortality with age, according to the Gompertz
law (Kirkwood, 2015; Gavrilov and Gavrilova, 2006). This law con-
siders age, but not health status: the potency of age as the only risk
factor for mortality reflects undefined changes in health. This un-
measured heterogeneity in health (and thus in the risk of death of
people of the same age) is termed “frailty” (Vaupel et al., 1979).
Clinically, frailty is recognized as a multiply-determined state of in-
creased vulnerability; it increases with age (Rockwood, 2005;
Rockwood et al., 2017; Clegg et al., 2013; Xue et al., 2016). Reflecting
these many determinants, a broad range of health deficits can char-
acterize individual frailty through a frailty index (FI), which is the
proportion (from 0 to 1) of possible health deficits that are present in an
individual (Mitnitski et al., 2001). The FI resolves much of the other-
wise unmeasured heterogeneity in health of people of the same age, and
is correlated with individual mortality (A. Mitnitski et al., 2017;
Kulminski et al., 2008; Rockwood et al., 2017; Clegg et al., 2013).

Progress in understanding frailty in humans in relation to aging
requires models. Animal models of health offer convenience, economy,
and qualitatively similar behavior to human aging and mortality
(Howlett, 2015). Mathematical models of aging can play a similar but

complementary role, and have a long history (Yashin et al., 2000).
Computational (“in silico”) models can capture individual variability of
health and mortality with stochastic transitions in health states. These
computational models allow us to inexpensively generate large popu-
lations, examine hypotheses of cause and effect, develop new analytical
tools, and explore sample size effects. Computational models of orga-
nismal aging nevertheless entail significant simplification; they are not
intended to directly address particular details of individual health.
However, they can explore the mechanisms that underlie the simplicity
and success of the FI (Mitnitski and Rockwood, 2015; A. Mitnitski et al.,
2017). How aging gives rise to frailty remains poorly understood and
requires new approaches. Complex networks provide natural models of
inter-relationships in biology, physics, and social interactions (Barabasi,
2016) and can be used to explore the relationships between aging,
frailty and mortality.

In this mini-review, we summarize our recent work—providing a
mechanistic understanding of why and how deficits accumulation,
summarized by the frailty index, is related to aging and mortality at the
systems (whole organism) level.

2. Results and discussion

We have used a complex network to model human aging and relate
it to frailty (Fig. 1) (Taneja et al., 2016; Farrell et al., 2016; A.B.
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Mitnitski et al., 2017). Nodes of the network can each be either un-
damaged or damaged (thereby representing deficits). Damaged nodes
can be repaired, reflecting an important source of the observed dy-
namics of frailty (A. Mitnitski et al., 2017). Nodes correspond to generic
health attributes, and are not explicitly identified. The connections
between nodes represent significant correlative connections, which can
be causal. A relatively small number of nodes (“hubs”) are well con-
nected whereas most peripheral nodes are not, as is captured with a
scale-free distribution of the number of connections for each node
(Barabasi, 2016; Taneja et al., 2016). The two most connected nodes
are mortality nodes; the next most connected nodes which are not
mortality nodes are frailty nodes. Frailty nodes broadly correspond to
clinically or biologically significant health characteristics. Most nodes
have few connections.

Nodes are damaged randomly reflecting environmental influences,
intrinsic features, and their interaction – such as through inflammation
(Fulop et al., 2015; Jazwinski and Kim, 2017). Through interaction, the
rate of damage of an individual node increases as more of its connected
neighbors are damaged. Let the local frailty fi be the fraction of da-
maged nodes connected with the i-th node (where 0 < fi < 1). The
damage Γ+ and repair Γ− rates for the i-th node can be approximated
using an exponential function of the local frailty: Γ+ = Γ0 exp(γ+ fi);
Γ− = Γ0 / R0 exp(−γ− fi) and the constant parameters Γ0, R0, γ+,γ−
(Taneja et al., 2016; Farrell et al., 2016; A.B. Mitnitski et al., 2017). The
overall proportion of damaged frailty nodes corresponds to the FI.
There are three additional parameters of the model: the scale-free ex-
ponent α, the average degree of connectivity (i.e. the number of con-
nected nodes) to a given node, 〈k〉, and the number of frailty nodes.
The values of these parameters can be found in Farrell et al., 2016. The
best fitting of mortality was obtained using 2 mortality nodes. Although
the information values increased with a larger number of nodes, the
number of frailty nodes did not influence the shapes of the mortality
and average frailty curves (Farrell et al., 2016). The behavior of our
complex network quantitatively captures Gompertz's law (Fig. 2), the
accelerated growth of the FI with age, the broadening of the distribu-
tion of the FI with age, and its observed submaximal values (at FI < 1)
(Farrell et al., 2016; A.B. Mitnitski et al., 2017).

Three examples illustrate both the power and the limitations of
quantitative modeling. First, a quantitative model requires every as-
sumption to be explicit, and this allows hypotheses of causal relation-
ships to be explored. Even though hypotheses are difficult to falsify
with only a specific model together with a finite parameter range, the
plausibility and consistency of hypotheses can be validated. For ex-
ample, programmed aging implies an explicit age-dependence of cel-
lular or organismal function (A.B. Mitnitski et al., 2017). Contrasting

this is the hypothesis that aging results implicitly from the accumula-
tion of damage (Kowald and Kirkwood, 2016). Our model supports this
latter hypothesis, by showed that aging phenomenology could be re-
covered with no explicit age-dependent rates of damage or mortality.

Models allow us to explore quantitative hypotheses and so generate
testable predictions. For our second example (Farrell et al., 2016),

Fig. 1. Connectivity networks of a model in-
dividual at age 40 years (left) and then at age 80
(right). The circle size of each node is proportional
to its connectivity. Damaged nodes are filled, un-
damaged nodes are empty. Individuals die when
both mortality nodes (red circles, being the two
most connected nodes) are damaged. Also shown
are 30 frailty nodes (blue circles), and 268 others
(green circles). At age 40 neither mortality node is
damaged, whereas 3 of 30 FI nodes are (FI = 3/
30 = 0.10) as are 34 other nodes; at age 80, one
mortality node, 15 FI nodes (FI = 15/30 = 0.50),
and 173 other nodes are damaged. This individual
died at age 82. (For interpretation of the references
to colour in this figure legend, the reader is re-
ferred to the web version of this article.)

Fig. 2. Variation of the mortality rate with age with network parameters. The default
model parameters are used for different average connectivities 〈k〉 (b), or for different
scale-free exponents α (a). Black squares indicate observational statistics (Arias, 2014).
Parameter values are as indicated by the laegends; otherwise default parameters are used
with Γ0 = 0.00113 (per year), R0 = 1.5, γ+ = 10.27, γ− = 6.5, 〈k〉 = 4, and
α = 2.27. N = 104 network nodes were used. After (Farrell et al., 2016). Our model does
not address development and so does not exhibit increased early-childhood mortality.
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